結果
問題 | No.2379 Burnside's Theorem |
ユーザー | llc5pg |
提出日時 | 2023-07-16 15:31:02 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7 ms / 2,000 ms |
コード長 | 5,700 bytes |
コンパイル時間 | 1,990 ms |
コンパイル使用メモリ | 185,076 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-17 12:43:50 |
合計ジャッジ時間 | 2,856 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 5 ms
6,940 KB |
testcase_14 | AC | 6 ms
6,944 KB |
testcase_15 | AC | 7 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,940 KB |
testcase_23 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; //#include <atcoder/modint> //using namespace atcoder; //using mint = modint998244353; # define M_PI 3.14159265358979323846 /* pi */ #define watch(x) cout << (#x) << " is " << (x) << endl //#pragma GCC target ("avx2") #pragma GCC optimization ("Ofast") const int MOD = (1e9+7); template < typename T = int > ostream& operator << (ostream &out, const vector < T > &v){ for (const T &x: v) out << x << ' '; return out; } template<class T> void printmat(const vector<vector<T>>& mat) { for (auto row : mat) { for (auto elem : row) cout << elem << " "; cout << "\n"; } } void printdq(const deque<int>& v) { for (auto elem : v) cout << elem << " "; cout << endl; } template<class T> void printv(const vector<T>& v) { for (auto elem : v) cout << elem << " "; cout << "\n"; } template<class T> void printdq(const deque<T>& v) { for (auto elem : v) cout << elem << " "; cout << endl; } template<class T1, class T2> void printvp(const vector<pair<T1,T2>>& vp) { for (auto pr : vp) { cout << pr.first << " " << pr.second; cout << "\n"; } } void printvs(const vector<set<int>>& vs) { for (auto row : vs) { for (auto elem : row) cout << elem << ", "; cout << endl; } } template<class T> void printht(const unordered_map<T, T>& ht) { for (auto elem : ht) cout << elem.first << " : " << elem.second << endl; } template<class T1, class T2> void printmp(const map<T1, T2>& ht) { for (auto elem : ht) cout << elem.first << " : " << elem.second << endl; } template<class T> void printst(const set<T>& st) { for (auto elem : st) cout << elem << " "; cout << endl; } template<class T> void printms(const multiset<T>& st) { for (auto elem : st) cout << elem << " "; cout << endl; } bool isPrime(long long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } map<long long, long long> primeFactors(long long n) { map<long long, long long> ans; while (n % 2 == 0) { ans[2]++; n = n/2; } for (long long i = 3; i*i <= (n); i = i + 2) { while (n % i == 0) { ans[i]++; n = n/i; } } if (n > 2) ans[n]++; return ans; } /* vector<int> uf(n), sz(n,1); for (int i=0; i<n; i++) uf[i] = i; */ int find_f(const vector<int>& uf, int i) { while (uf[i]!=i) i = uf[i]; return i; } bool union_f(vector<int>& uf, vector<int>& sz, int a, int b) { a = find_f(uf, a); b = find_f(uf, b); //cout << "a, b = " << a << ", " << b << endl; if (a==b) return false; if (sz[a] < sz[b]) { //cout << "sz[a], sz[b] = " << sz[a] << ", " << sz[b] << endl; //cout << "a, b = " << a << ", " << b << endl; swap(a,b); //cout << "a, b = " << a << ", " << b << endl; } sz[a] += sz[b]; uf[b] = a; return true; } long long modexp(long long b, long long e, long long M) { if (!e) return 1; b %= M; long long x = modexp(b * b % M, e / 2, M); if (e % 2) { return b * x % M; } else { return x; } } ll gcdExtended(ll a, ll b, ll* x, ll* y) { if (a == 0) { *x = 0, *y = 1; return b; } ll x1, y1; ll gcd = gcdExtended(b % a, a, &x1, &y1); *x = y1 - (b / a) * x1; *y = x1; return gcd; } ll modInverse(ll a, ll m) { ll x, y, res=-1; ll g = gcdExtended(a, m, &x, &y); if (g != 1) { //cout << "Inverse doesn't exist"; res = -1; } else { // m is added to handle negative x res = (x % m + m) % m; } return res; } int lenOfLIS(vector<int>& v) { int n = v.size(), len = 0; vector<int> dp(n,0); for (int num : v) { int i = lower_bound(dp.begin(), dp.begin()+len, num) - dp.begin(); dp[i] = num; if (i == len) { len++; } } return len; } #if 0 const int N = 1e6+4; // limit for array size int n; // array size int t[2 * N]; void build() { // build the tree for (int i = n - 1; i > 0; --i) t[i] = max(t[i<<1], t[i<<1|1]); } void modify(int p, int value) { // set value at position p for (t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; } int query(int l, int r) { // max on interval [l, r) int res = 0; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if (l&1) res = max(res, t[l++]); if (r&1) res = max(res, t[--r]); } return res; } #endif vector<int> SieveOfEratosthenes(int n) { bool prime[n+1]; memset(prime, true, sizeof(prime)); for (int p=2; p*p<=n; p++) { if (prime[p]) { for (int i=p*p; i<=n; i+=p) prime[i] = false; } } vector<int> v; for (int p=2; p<=n; p++) if (prime[p]) v.push_back(p); return v; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int T=1, caseIdx=0; //cin >> T; while (T--) { //caseIdx++; //const int M = 998244353; ll n; cin >> n; auto mp = primeFactors(n); //printmp(mp); string ans = (mp.size()<=2) ? "Yes" : "No"; //cout << fixed << setprecision(9); cout << ans << "\n"; //cout << "Case #" << caseIdx << ": " << ans << "\n"; } }