結果
| 問題 |
No.2379 Burnside's Theorem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-07-18 19:23:16 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 11 ms / 2,000 ms |
| コード長 | 7,897 bytes |
| コンパイル時間 | 3,289 ms |
| コンパイル使用メモリ | 227,768 KB |
| 最終ジャッジ日時 | 2025-02-15 15:38:40 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 20 |
ソースコード
// AUTHOR->DEV KUDAWLA
//----------------------------------------------------
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree<long long, null_type, less<long long>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; // find_by_order(it return an iterator input is a value), order_of_key(input is index)
typedef tree<long long, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset;
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define ll long long
#define vl vector<long long>
#define nline cout << "\n"
#define pb push_back
#define db pop_back
#define n_digit(n) (int)log10(n) + 1
#define msb(n) (int)(log2(n)) + 1
// it is 1 based
#define pll pair<ll, ll>
#define all(x) x.begin(), x.end()
#define lt(x) x.size()
#define ternary(a, b, c) ((a) ? (b) : (c))
#define yesno(a) a ? cout << "Yes" : cout << "No"
#define ff first
#define ss second
#define sroot(a) sqrt((long double)a)
#define Max(a, b) max((ll)a, (ll)b)
#define Min(a, b) min((ll)a, (ll)b)
#define mkp(a, b) make_pair(a, b)
#define str string
#define tbits(x) __builtin_popcountll(x)
#define LOCAL_COMPILER
#ifdef LOCAL_COMPILER
#define dbg(x) \
cerr << #x << " "; \
cerr << x << "\n";
#endif
#ifndef LOCAL_COMPILER
#define dbg(x)
#endif
//----------------------------------------------------
template <class T>
istream &operator>>(istream &is, vector<T> &v)
{
int n = v.size();
for (int i = 0; i < n; i++)
is >> v[i];
return is;
}
template <class T>
istream &operator>>(istream &is, vector<vector<T>> &v)
{
int n = v.size();
int m = v[0].size();
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
is >> v[i][j];
return is;
}
template <class T>
ostream &operator<<(std::ostream &os, vector<T> &v)
{
int n = v.size();
for (int i = 0; i < n; i++)
os << v[i] << ((i == n - 1) ? "\n" : " ");
return os;
}
template <class T>
ostream &operator<<(std::ostream &os, vector<vector<T>> &v)
{
int n = v.size();
int m = v[0].size();
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
os << v[i][j] << " ";
os << "\n";
}
return os;
}
template <class T>
vector<T> add(vector<T> v1, vector<T> v2)
{
vector<T> v3 = v1;
for (ll i = 0; i < v2.size(); i++)
v3.push_back(v2[i]);
return v3;
}
inline ll power2(ll n)
{
ll answer = 0;
if (n != 0)
answer = msb(((ll)n) ^ ((ll)(n - 1))) - 1;
return answer;
}
inline ll indexOf(ordered_multiset &st, ll value)
{
return st.order_of_key(value);
}
inline ll valueAt(ordered_multiset &st, ll index)
{
return *st.find_by_order(index);
}
inline ll indexOf(ordered_set &st, ll value)
{
return st.order_of_key(value);
}
inline ll valueAt(ordered_set &st, ll index)
{
return *st.find_by_order(index);
}
template <class T>
void Distinct(T &v, bool sorting = true)
{
if (sorting)
sort(begin(v), end(v));
v.resize(unique(begin(v), end(v)) - begin(v));
}
//----------------------------------------------------
const ll N1 = 1000000007;
const ll N2 = 998244353;
const long double epsilon = 1e-9;
//----------------------------------------------------
// MODULAR ARITHMETIC
inline ll expo(ll a, ll b, ll mod = LONG_LONG_MAX)
{
ll res = 1;
while (b > 0)
{
if (b & 1)
res = ((__int128_t)res * a) % mod;
a = ((__int128_t)a * a) % mod;
b = b >> 1;
}
return res;
}
inline ll mminvprime(ll a, ll b) { return expo(a, b - 2, b); }
inline ll mod_add(ll a, ll b, ll m = N1)
{
a = a % m;
b = b % m;
return (((a + b) % m) + m) % m;
}
inline ll mod_mul(ll a, ll b, ll m = N1)
{
a = a % m;
b = b % m;
return (((__int128_t)(a * b) % m) + m) % m;
}
inline ll mod_sub(ll a, ll b, ll m = N1)
{
a = a % m;
b = b % m;
return (((a - b) % m) + m) % m;
}
inline ll mod_div(ll a, ll b, ll m = N1)
{
a = a % m;
b = b % m;
return (mod_mul(a, mminvprime(b, m), m) + m) % m;
} // only for prime m
ll ncr(ll n, ll r, bool mod_version = false, ll mod = N1)
{
ll answer = 0;
if (n >= r)
{
r = Min(r, n - r);
if (mod_version == true)
{
ll a = 1;
for (ll i = n; i >= n - r + 1; i--)
a = mod_mul(a, i, mod);
ll b = 1;
for (ll i = 1; i <= r; i++)
b = mod_mul(b, i, mod);
b = mminvprime(b, mod);
a = mod_mul(a, b, mod);
answer = a;
}
else
{
ll a = 1;
ll b = 1;
for (ll i = n; i >= n - r + 1; i--)
{
a *= i;
b *= (n - i + 1);
ll g = __gcd(a, b);
a /= g, b /= g;
}
answer = a / b;
}
}
return answer;
}
ll factorial(ll n, bool mod_version = false, ll mod = N1)
{
ll answer = 1;
if (mod_version == true)
{
for (int i = 2; i <= n; i++)
answer = mod_mul(answer, i, mod);
}
else
{
for (int i = 2; i <= n; i++)
answer *= i;
}
return answer;
}
bool is_prime(ll a)
{
if (a == 1)
return false;
for (ll i = 2; i * i <= a; i++)
{
if (a % i == 0)
return false;
}
return true;
}
//----------------------------------------------------
// KMP search
void computeLPSArray(string pat, ll M, ll lps[])
{
ll len = 0;
ll i = 1;
lps[0] = 0;
while (i < M)
{
if (pat[i] == pat[len])
{
len++;
lps[i] = len;
i++;
}
else
{
if (len != 0)
len = lps[len - 1];
else
{
lps[i] = len;
i++;
}
}
}
}
ll KMPSearch(string pat, string txt)
{
ll M = pat.length();
ll N = txt.length();
ll lps[M];
ll j = 0;
computeLPSArray(pat, M, lps);
ll i = 0;
ll res = 0;
ll next_i = 0;
while (i < N)
{
if (pat[j] == txt[i])
i++, j++;
if (j == M)
{
j = lps[j - 1];
res++;
}
else if (i < N && pat[j] != txt[i])
{
if (j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
return res;
} // O(M+N)
map<ll, ll> prime_factors(ll n, bool debug = false)
{
map<ll, ll> answer;
ll a = n;
for (ll i = 2; i * i <= a; i++)
while (a % i == 0)
answer[i]++, a /= i;
if (a > 1)
answer[a]++;
if (debug)
{
for (auto i : answer)
cout << i.first << " -> " << i.second << "\n";
}
return answer;
}
//----------------------------------------------------
const int n_sieve = (10000000) + 1; // O(Nlog(log(N)))
// vector<bool> prime_sieve(n_sieve, true);
void initialise_sieve(vector<bool> &prime_sieve)
{
prime_sieve[0] = false;
prime_sieve[1] = false;
for (ll i = 2; i * i < lt(prime_sieve); i++)
if (prime_sieve[i] == true)
for (ll j = 2; j * i < lt(prime_sieve); j++)
prime_sieve[j * i] = false;
}
//----------------------------------------------------
// CODE STARTS HERE
//----------------------------------------------------
void solve(bool testCases = true)
{
ll T = 1; //->test cases
if (testCases)
cin >> T;
while (T--)
{
ll n;
cin >> n;
map<ll, ll> mp = prime_factors(n);
yesno(mp.size() <= 2);
nline;
//----------------------------------------------
// CODE ENDS HERE
}
}
//----------------------------------------------------
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
// ------------------------------------------------
// initialise_sieve(prime_sieve);
//-------------------------------------------------
solve(false);
//-------------------------------------------------
return 0;
}
//----------------------------------------------------