結果
| 問題 |
No.2395 区間二次変換一点取得
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-07-21 16:34:28 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 606 ms / 2,000 ms |
| コード長 | 14,698 bytes |
| コンパイル時間 | 4,620 ms |
| コンパイル使用メモリ | 266,312 KB |
| 最終ジャッジ日時 | 2025-02-15 16:08:57 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
//using mint = modint998244353;
using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//【双対セグメント木(M-集合)】
/*
* Dual_segtree<S, F, act, comp, id>(vS v) : O(n)
* 配列 v[0..n) の要素で初期化する.
* 要素は左モノイド作用付き集合 (S, F, act, comp, id) の元とする.
*
* set(int i, S x) : O(log n)
* v[i] = x とする.
*
* S get(int i) : O(log n)
* v[i] を返す.
*
* apply(int i, F f) : O(log n)
* v[i] = f( v[i] ) とする.
*
* apply(int l, int r, F f) : O(log n)
* v[l..r) = f( v[l..r) ) とする.
*/
template <class S, class F, S(*act)(F, S), F(*comp)(F, F), F(*id)()>
class Dual_segtree {
int actual_n; // 実際の要素数
int n; // 完全二分木の葉の数(必ず 2 冪)
// S の要素の格納用配列
vector<S> v;
// F の遅延評価用の完全二分木
vector<F> lazy;
// 遅延させていた評価を行う.:O(1)
void eval(int k) {
// 遅延させていた評価がなければ何もしない.
if (lazy[k] == id()) return;
// 子が居れば子に伝搬する.
if (k < n / 2) {
// 左作用を考えているのでこの向きに合成する.
lazy[k * 2] = comp(lazy[k], lazy[k * 2]);
lazy[k * 2 + 1] = comp(lazy[k], lazy[k * 2 + 1]);
}
// 葉なら遅延させずに v の要素に作用させてしまえばいい.
else {
v[k * 2 - n] = act(lazy[k], v[k * 2 - n]);
v[k * 2 + 1 - n] = act(lazy[k], v[k * 2 + 1 - n]);
}
// 子への伝搬を終えたので自身は恒等写像になる.
lazy[k] = id();
}
// k : 注目ノード,[kl..kr) : ノード v[k] が表す区間
void set_sub(int i, S x, int k, int kl, int kr) {
// 葉まで降りてきたら値を代入して帰る.
if (kr - kl == 1) {
v[k - n] = x;
return;
}
// まず自身の評価を行っておく.
eval(k);
// 左右の子を見に行く.
int km = (kl + kr) / 2;
if (i < km) set_sub(i, x, k * 2, kl, km);
else set_sub(i, x, k * 2 + 1, km, kr);
}
// k : 注目ノード,[kl..kr) : ノード v[k] が表す区間
S get_sub(int i, int k, int kl, int kr) {
// 葉まで降りてきたら値を返す.
if (kr - kl == 1) return v[k - n];
// まず自身の評価を行っておく.
eval(k);
// 左右の子を見に行く.
int km = (kl + kr) / 2;
if (i < km) return get_sub(i, k * 2, kl, km);
else return get_sub(i, k * 2 + 1, km, kr);
}
// k : 注目ノード,[kl, kr) : ノード v[k] が表す区間
void apply_sub(int l, int r, F f, int k, int kl, int kr) {
// 範囲外なら何もしない.
if (kr <= l || r <= kl) return;
// 完全に範囲内なら自身の値を更新する.
if (l <= kl && kr <= r) {
if (kr - kl > 1) {
// 左作用を考えているのでこの向きに合成する.
lazy[k] = comp(f, lazy[k]);
}
else {
v[k - n] = act(f, v[k - n]);
}
return;
}
// まず自身の評価を行っておく.
eval(k);
// 一部の範囲のみを含むなら子を見に行く.
int km = (kl + kr) / 2;
apply_sub(l, r, f, k * 2, kl, km);
apply_sub(l, r, f, k * 2 + 1, km, kr);
}
public:
// 配列 v[0..n) の要素で初期化する.
Dual_segtree(vector<S>& v_) : actual_n(sz(v_)) {
// verify : https://judge.yosupo.jp/problem/range_affine_point_get
// 要素数以上となる最小の 2 冪を求め,n とする.
n = 1 << (msb(actual_n - 1) + 1);
// 配列の初期化
v = v_;
v.resize(n);
lazy.assign(n, id());
}
Dual_segtree() : actual_n(0), n(0) {} // ダミー
// v[i] = x とする.
void set(int i, S x) {
Assert(0 <= i && i < actual_n);
set_sub(i, x, 1, 0, n);
}
// v[i] を返す.
S get(int i) {
// verify : https://judge.yosupo.jp/problem/range_affine_point_get
Assert(0 <= i && i < actual_n);
return get_sub(i, 1, 0, n);
}
// v[l..r) = f( v[l..r) ) とする.
void apply(int l, int r, F f) {
// verify : https://judge.yosupo.jp/problem/range_affine_point_get
chmax(l, 0); chmin(r, actual_n);
if (l >= r) return;
apply_sub(l, r, f, 1, 0, n);
}
// v[i] = f( v[i] ) とする.
void apply(int i, F f) {
// verify : https://yukicoder.me/problems/no/1000
Assert(0 <= i && i < actual_n);
apply_sub(i, i + 1, f, 1, 0, n);
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Dual_segtree seg) {
rep(i, seg.actual_n) os << seg.get(i) << " ";
return os;
}
#endif
};
//【正方行列(固定サイズ)】
/*
* Fixed_matrix<T, n>() : O(n^2)
* T の要素を成分にもつ n×n 零行列で初期化する.
*
* Fixed_matrix<T, n>(bool identity = true) : O(n^2)
* T の要素を成分にもつ n×n 単位行列で初期化する.
*
* Fixed_matrix<T, n>(vvT a) : O(n^2)
* 二次元配列 a[0..n)[0..n) の要素で初期化する.
*
* A + B : O(n^2)
* n×n 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n^2)
* n×n 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n^2)
* n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n^2)
* n×n 行列 A と n 次元列ベクトル array<T, n> x の積を返す.
*
* x * A : O(n^2)
* n 次元行ベクトル array<T, n> x と n×n 行列 A の積を返す.
*
* A * B : O(n^3)
* n×n 行列 A と n×n 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T, int n>
struct Fixed_matrix {
array<array<T, n>, n> v; // 行列の成分
// n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する.
Fixed_matrix(bool identity = false) {
rep(i, n) v[i].fill(T(0));
if (identity) rep(i, n) v[i][i] = T(1);
}
// 二次元配列 a[0..n)[0..n) の要素で初期化する.
Fixed_matrix(const vector<vector<T>>& a) {
// verify : https://yukicoder.me/problems/no/1000
Assert(sz(a) == n && sz(a[0]) == n);
rep(i, n) rep(j, n) v[i][j] = a[i][j];
}
// 代入
Fixed_matrix(const Fixed_matrix&) = default;
Fixed_matrix& operator=(const Fixed_matrix&) = default;
// アクセス
inline array<T, n> const& operator[](int i) const { return v[i]; }
inline array<T, n>& operator[](int i) { return v[i]; }
// 入力
friend istream& operator>>(istream& is, Fixed_matrix& a) {
rep(i, n) rep(j, n) is >> a[i][j];
return is;
}
// 比較
bool operator==(const Fixed_matrix& b) const { return v == b.v; }
bool operator!=(const Fixed_matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Fixed_matrix& operator+=(const Fixed_matrix& b) {
rep(i, n) rep(j, n) v[i][j] += b[i][j];
return *this;
}
Fixed_matrix& operator-=(const Fixed_matrix& b) {
rep(i, n) rep(j, n) v[i][j] -= b[i][j];
return *this;
}
Fixed_matrix& operator*=(const T& c) {
rep(i, n) rep(j, n) v[i][j] *= c;
return *this;
}
Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; }
Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; }
Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; }
friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; }
Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(n^2)
array<T, n> operator*(const array<T, n>& x) const {
array<T, n> y{ 0 };
rep(i, n) rep(j, n) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(n^2)
friend array<T, n> operator*(const array<T, n>& x, const Fixed_matrix& a) {
array<T, n> y{ 0 };
rep(i, n) rep(j, n) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Fixed_matrix operator*(const Fixed_matrix& b) const {
// verify : https://yukicoder.me/problems/no/1000
Fixed_matrix res;
rep(i, n) rep(j, n) rep(k, n) res[i][j] += v[i][k] * b[k][j];
return res;
}
Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Fixed_matrix pow(ll d) const {
Fixed_matrix res(true), pow2(*this);
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Fixed_matrix& a) {
rep(i, n) {
os << "[";
rep(j, n) os << a[i][j] << " ]"[j == n - 1];
if (i < n - 1) os << "\n";
}
return os;
}
#endif
};
//【行列乗算 左作用付き ベクトル 集合】
constexpr int NB01 = 5;
using TB01 = mint;
using SB01 = array<TB01, NB01>;
using FB01 = Fixed_matrix<TB01, NB01>;
SB01 actB01(FB01 f, SB01 x) { return f * x; }
FB01 compB01(FB01 f, FB01 g) { return f * g; }
FB01 idB01() { return Fixed_matrix<TB01, NB01>(true); }
#define MatrixLMul_Vector_mset SB01, FB01, actB01, compB01, idB01
// ↑ を成分で書き下したもの.これで TLE 解消されてくれない?
using S = array<mint, 4>;
using F = array<mint, 8>;
S act(F tmp, S x) {
auto [a, b, c, d, e, f, g, h] = tmp;
S res;
res[0] = a * x[0] + b;
res[1] = c * x[1] + d * x[2] + e * x[3];
res[2] = f * x[2];
res[3] = g * x[2] + h * x[3];
return res;
}
F comp(F tmp, F tmp2) {
auto [a, b, c, d, e, f, g, h] = tmp;
auto [a2, b2, c2, d2, e2, f2, g2, h2] = tmp2;
return {
a * a2,
b + a * b2,
c * c2,
c * d2 + d * f2 + e * g2,
c * e2 + e * h2,
f * f2,
f2 * g + g2 * h,
h * h2
};
}
F id() {
return { 1, 0, 1, 0, 0, 1, 0, 1 };
}
#define MatrixLMul_Vector_mset2 S, F, act, comp, id
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, b, q;
cin >> n >> b >> q;
mint::set_mod(b);
vector<S> ini(n, S{1, 1, 1, 1});
Dual_segtree<MatrixLMul_Vector_mset2> seg(ini);
F f = {1, 1, 3, 2, 2, 3, 3, 3};
rep(hoge, q) {
int l, m, r;
cin >> l >> m >> r;
l--; m--;
seg.apply(l, r, f);
auto [x, y, z, xz] = seg.get(m);
cout << x << " " << y << " " << z << endl;
}
}