結果
| 問題 |
No.1920 Territory
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2023-07-22 13:56:31 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 718 ms / 5,000 ms |
| コード長 | 7,136 bytes |
| コンパイル時間 | 3,839 ms |
| コンパイル使用メモリ | 284,424 KB |
| 実行使用メモリ | 42,340 KB |
| 最終ジャッジ日時 | 2024-09-22 13:58:06 |
| 合計ジャッジ時間 | 18,633 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 32 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename Abelian>
struct FenwickTree {
explicit FenwickTree(const int n, const Abelian ID = 0)
: n(n), ID(ID), data(n, ID) {}
void add(int idx, const Abelian val) {
for (; idx < n; idx |= idx + 1) {
data[idx] += val;
}
}
Abelian sum(int idx) const {
Abelian res = ID;
for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) {
res += data[idx];
}
return res;
}
Abelian sum(const int left, const int right) const {
return left < right ? sum(right) - sum(left) : ID;
}
Abelian operator[](const int idx) const { return sum(idx, idx + 1); }
int lower_bound(Abelian val) const {
if (val <= ID) return 0;
int res = 0, exponent = 1;
while (exponent <= n) exponent <<= 1;
for (int mask = exponent >> 1; mask > 0; mask >>= 1) {
const int idx = res + mask - 1;
if (idx < n && data[idx] < val) {
val -= data[idx];
res += mask;
}
}
return res;
}
private:
const int n;
const Abelian ID;
std::vector<Abelian> data;
};
struct UnionFind {
explicit UnionFind(const int n) : data(n, -1) {}
int root(const int ver) {
return data[ver] < 0 ? ver : data[ver] = root(data[ver]);
}
bool unite(int u, int v) {
u = root(u);
v = root(v);
if (u == v) return false;
if (data[u] > data[v]) std::swap(u, v);
data[u] += data[v];
data[v] = u;
return true;
}
bool is_same(const int u, const int v) { return root(u) == root(v); }
int size(const int ver) { return -data[root(ver)]; }
private:
std::vector<int> data;
};
// https://atcoder.jp/contests/joi2014ho/tasks/joi2014ho5
int main() {
constexpr int L = 200000;
int n_, m_; cin >> n_ >> m_;
const int n = n_ + m_;
vector<int> a(n + 4), b(n + 4), c(n + 4), d(n + 4);
REP(i, n_) {
cin >> b[i] >> a[i] >> c[i];
d[i] = b[i];
}
FOR(i, n_, n) {
cin >> a[i] >> b[i] >> d[i];
c[i] = a[i];
}
a[n] = b[n] = d[n] = 0; c[n] = L + 1;
a[n + 1] = b[n + 1] = c[n + 1] = 0; d[n + 1] = L + 1;
a[n + 2] = c[n + 2] = L + 1; b[n + 2] = 0; d[n + 2] = L + 1;
a[n + 3] = 0; b[n + 3] = d[n + 3] = L + 1; c[n + 3] = L + 1;
vector<int> xs{0, L + 1};
xs.reserve((n + 4) * 6 + 2);
copy(ALL(a), back_inserter(xs));
REP(i, n + 4) {
if (a[i] > 0) xs.emplace_back(a[i] - 1);
if (a[i] + 1 <= L + 1) xs.emplace_back(a[i] + 1);
}
copy(ALL(c), back_inserter(xs));
REP(i, n + 4) {
if (c[i] > 0) xs.emplace_back(c[i] - 1);
if (c[i] + 1 <= L + 1) xs.emplace_back(c[i] + 1);
}
sort(ALL(xs));
xs.erase(unique(xs.begin(), xs.end()), xs.end());
const int x_size = xs.size();
vector<int> ys{0, L + 1};
ys.reserve((n + 4) * 6 + 2);
copy(ALL(b), back_inserter(ys));
REP(i, n + 4) {
if (b[i] > 0) ys.emplace_back(b[i] - 1);
if (b[i] + 1 <= L + 1) ys.emplace_back(b[i] + 1);
}
copy(ALL(d), back_inserter(ys));
REP(i, n + 4) {
if (d[i] > 0) ys.emplace_back(d[i] - 1);
if (d[i] + 1 <= L + 1) ys.emplace_back(d[i] + 1);
}
sort(ALL(ys));
ys.erase(unique(ys.begin(), ys.end()), ys.end());
const int y_size = ys.size();
REP(i, n + 4) a[i] = distance(xs.begin(), lower_bound(ALL(xs), a[i]));
REP(i, n + 4) b[i] = distance(ys.begin(), lower_bound(ALL(ys), b[i]));
REP(i, n + 4) c[i] = distance(xs.begin(), lower_bound(ALL(xs), c[i]));
REP(i, n + 4) d[i] = distance(ys.begin(), lower_bound(ALL(ys), d[i]));
vector<vector<pair<int, int>>> par_y(x_size), ins_x(x_size), era_x(x_size);
REP(i, n + 4) {
if (a[i] == c[i]) {
par_y[a[i]].emplace_back(b[i], d[i]);
} else {
ins_x[a[i]].emplace_back(b[i], i);
era_x[c[i]].emplace_back(b[i], i);
}
}
ll ans = -(n + 4);
FenwickTree<int> bit(y_size);
REP(x, x_size) {
for (const auto& [y, _] : ins_x[x]) bit.add(y, 1);
for (const auto& [y1, y2] : par_y[x]) {
const int cross = bit.sum(y1, y2 + 1);
ans += cross;
if (cross == 0) ++ans;
}
for (const auto& [y, _] : era_x[x]) bit.add(y, -1);
}
UnionFind union_find(n + 4);
vector<int> id_y(y_size, -1);
set<int> t;
map<int, int> intervals;
const auto find = [&](const int y) {
const auto it = intervals.lower_bound(y);
if (it != intervals.end() && it->first == y) return it;
if (it != intervals.begin() && prev(it)->first <= y && y <= prev(it)->second) return prev(it);
return intervals.end();
};
REP(x, x_size) {
for (const auto [y, id] : ins_x[x]) {
if (const auto it = find(y); it != intervals.end()) {
const auto [l, r] = *it;
intervals.erase(it);
const auto it_r = t.lower_bound(y);
if (it_r != t.end() && *it_r <= r) {
assert(intervals.emplace(*it_r, r).second);
}
if (it_r != t.begin() && *prev(it_r) >= l) {
assert(intervals.emplace(l, *prev(it_r)).second);
}
assert(intervals.emplace(y, y).second);
} else {
assert(intervals.emplace(y, y).second);
}
id_y[y] = id;
assert(t.emplace(y).second);
}
for (const auto& [y1, y2] : par_y[x]) {
auto it = find(y1);
if (it == intervals.end()) {
it = intervals.lower_bound(y1);
if (it != intervals.end() && it->first > y2) it = intervals.end();
}
if (it != intervals.end()) {
vector<pair<int, int>> segs;
for (; it != intervals.end() && it->first <= y2; it = intervals.erase(it)) {
segs.emplace_back(*it);
}
FOR(i, 1, segs.size()) {
union_find.unite(id_y[segs[i - 1].first], id_y[segs[i].first]);
}
assert(intervals.emplace(segs.front().first, segs.back().second).second);
}
}
for (const auto& [y, _] : era_x[x]) {
id_y[y] = -1;
assert(t.erase(y) > 0);
const auto it = find(y);
assert(it != intervals.end());
const auto [l, r] = *it;
intervals.erase(it);
const auto it_r = t.lower_bound(y);
if (it_r != t.end() && *it_r <= r) {
assert(intervals.emplace(*it_r, r).second);
}
if (it_r != t.begin() && *prev(it_r) >= l) {
assert(intervals.emplace(l, *prev(it_r)).second);
}
}
}
REP(i, n + 4) {
if (b[i] == d[i] && union_find.root(i) == i) ++ans;
}
cout << ans - 1 << '\n';
return 0;
}
emthrm