結果
| 問題 |
No.2504 NOT Path Painting
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-07-22 17:46:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,732 bytes |
| コンパイル時間 | 1,290 ms |
| コンパイル使用メモリ | 100,316 KB |
| 最終ジャッジ日時 | 2025-02-15 18:04:00 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 13 TLE * 2 MLE * 6 |
ソースコード
// TLE 区間DP 苦行
#include <deque>
#include <iostream>
#include <tuple>
#include <vector>
#include <atcoder/modint>
using mint = atcoder::modint998244353;
struct SubtreeSize {
SubtreeSize(int n, const std::vector<std::vector<int>>& g): _n(n), _par(_n, -1), _siz(_n, 1) {
auto dfs = [&](auto dfs, int u, int p) -> int {
_par[u] = p;
for (int v : g[u]) if (v != p) {
_siz[u] += dfs(dfs, v, u);
}
return _siz[u];
};
dfs(dfs, 0, -1);
}
// u の親を p としたときの、部分木 u のサイズ
int operator()(int u, int p) const {
return _par[u] == p ? _siz[u] : _n - _siz[p];
}
// 解説の t (隣接点が ng1 の場合)
int t(int u, int ng1) const {
return _n - (*this)(ng1, u);
}
// 解説の t (隣接点が ng1, ng2 の場合)
int t(int u, int ng1, int ng2) const {
return _n - (*this)(ng1, u) - (*this)(ng2, u);
}
private:
int _n;
std::vector<int> _par, _siz;
};
int edge_num(int n) {
return (n * (n + 1)) >> 1;
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
auto solve = [&]{
int n;
std::cin >> n;
std::vector<std::vector<int>> g(n);
for (int i = 0; i < n - 1; ++i) {
int u, v;
std::cin >> u >> v;
--u, --v;
g[u].push_back(v);
g[v].push_back(u);
}
const int m = edge_num(n);
const mint inv_m = mint(m).inv();
SubtreeSize subtree_size { n, g };
std::vector<mint> ans_f(n, 0);
for (int x = 0; x < n; ++x) {
int u_x = edge_num(n);
for (int y : g[x]) {
u_x -= edge_num(subtree_size(y, x));
}
ans_f[x] = m * mint(m - u_x).inv();
}
std::vector<std::vector<mint>> ans_g(n, std::vector<mint>(n));
// par[x][y] := x を根とする木における y の親
std::vector<std::vector<int>> par(n, std::vector<int>(n, -1));
// x, y, A_{x,y}, B_{x,y}
std::deque<std::tuple<int, int, mint, mint>> dq;
for (int x = 0; x < n; ++x) {
ans_g[x][x] = ans_f[x];
// s_x(x)
const int s_x_x = n;
// u_{x,x}(x)
int u_xx_x = edge_num(n);
for (int y : g[x]) {
// s_x(y)
const int s_x_y = subtree_size(y, x);
u_xx_x -= edge_num(s_x_y);
}
for (int y : g[x]) {
// s_x(y)
const int s_x_y = subtree_size(y, x);
// u_{x,y}(x)
const int u_xy_x = u_xx_x - s_x_y * (s_x_x - s_x_y);
const mint Axy = u_xy_x * ans_f[x];
const mint Bxy = 0;
par[x][y] = x;
dq.emplace_back(x, y, Axy, Bxy);
}
}
while (dq.size()) {
auto [x, y, Axy, Bxy] = dq.front();
dq.pop_front();
// x を根とした木における y の親
const int par_y = par[x][y];
// s_x(y)
const int s_x_y = subtree_size(y, par_y);
// u_{x,y}(y)
int u_xy_y = edge_num(s_x_y);
for (int w : g[y]) if (w != par_y) {
u_xy_y -= edge_num(subtree_size(w, y));
}
// t_{x,y}(y)
const int t_xy_y = s_x_y;
ans_g[x][y] = Axy + u_xy_y * ans_f[y] + Bxy;
// sum _ {z in Pxy-{y}} t_{x,y}(y) t_{x,y}(z) g(y,z) の計算
int prev_z = y, z = par_y;
while (z != x) {
const int next_z = par[x][z];
// t_{x,y}(z)
// z の 1 つ前と 1 つ後が N_{x,y}(z) に含まれる頂点
const int t_xy_z = subtree_size.t(z, prev_z, next_z);
ans_g[x][y] += t_xy_y * t_xy_z * ans_g[y][z];
std::tie(prev_z, z) = std::make_tuple(z, next_z);
}
// t_{x,y}(x)
const int t_xy_x = subtree_size.t(x, prev_z);
ans_g[x][y] = (1 + ans_g[x][y] * inv_m) * (1 - t_xy_x * t_xy_y * inv_m).inv();
for (int w : g[y]) if (w != par_y) {
// t_{x,w}(x)
const int t_xw_x = t_xy_x;
// s_{x}(w)
const int s_x_w = subtree_size(w, y);
// t_{x,w}(y)
const int t_xw_y = t_xy_y - s_x_w;
// u_{x,w}(y)
const int u_xw_y = u_xy_y - s_x_w * (s_x_y - s_x_w);
// A_{x,w}
const mint Axw = Axy + u_xw_y * ans_f[y];
// B_{x,w}
mint Bxw = Bxy + t_xw_y * t_xw_x * ans_g[x][y];
// Bxw に sum_{z in Pxy-{y}} t_{x,w}(y) * t_{x,w}(z) * g(y,z) を足して更新
int prev_z = y, z = par_y;
while (z != x) {
const int next_z = par[x][z];
// t_{x,w}(z)
const int t_xw_z = subtree_size.t(z, prev_z, next_z);
// t_{x,w}(y) * t_{x,w}(z) * g(y, z)
Bxw += t_xw_y * t_xw_z * ans_g[y][z];
std::tie(prev_z, z) = std::make_tuple(z, next_z);
}
par[x][w] = y;
dq.emplace_back(x, w, Axw, Bxw);
}
}
mint ans = 1;
for (int x = 0; x < n; ++x) {
for (int y = 0; y <= x; ++y) {
ans += ans_g[x][y] * inv_m;
}
}
std::cout << ans.val() << '\n';
};
int t;
std::cin >> t;
while (t --> 0) {
solve();
}
return 0;
}