結果

問題 No.2504 NOT Path Painting
ユーザー suisensuisen
提出日時 2023-07-22 17:46:23
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,732 bytes
コンパイル時間 1,541 ms
コンパイル使用メモリ 105,688 KB
実行使用メモリ 13,884 KB
最終ジャッジ日時 2024-09-22 17:20:14
合計ジャッジ時間 10,559 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,884 KB
testcase_01 AC 380 ms
6,944 KB
testcase_02 AC 407 ms
6,944 KB
testcase_03 AC 411 ms
6,944 KB
testcase_04 AC 412 ms
6,944 KB
testcase_05 AC 415 ms
6,944 KB
testcase_06 AC 415 ms
6,940 KB
testcase_07 AC 414 ms
6,944 KB
testcase_08 AC 416 ms
6,940 KB
testcase_09 AC 411 ms
6,940 KB
testcase_10 AC 412 ms
6,944 KB
testcase_11 AC 411 ms
6,940 KB
testcase_12 AC 443 ms
6,948 KB
testcase_13 TLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

// TLE 区間DP 苦行

#include <deque>
#include <iostream>
#include <tuple>
#include <vector>

#include <atcoder/modint>

using mint = atcoder::modint998244353;

struct SubtreeSize {
    SubtreeSize(int n, const std::vector<std::vector<int>>& g): _n(n), _par(_n, -1), _siz(_n, 1) {
        auto dfs = [&](auto dfs, int u, int p) -> int {
            _par[u] = p;
            for (int v : g[u]) if (v != p) {
                _siz[u] += dfs(dfs, v, u);
            }
            return _siz[u];
        };
        dfs(dfs, 0, -1);
    }
    // u の親を p としたときの、部分木 u のサイズ
    int operator()(int u, int p) const {
        return _par[u] == p ? _siz[u] : _n - _siz[p];
    }
    // 解説の t (隣接点が ng1 の場合)
    int t(int u, int ng1) const {
        return _n - (*this)(ng1, u);
    }
    // 解説の t (隣接点が ng1, ng2 の場合)
    int t(int u, int ng1, int ng2) const {
        return _n - (*this)(ng1, u) - (*this)(ng2, u);
    }
private:
    int _n;
    std::vector<int> _par, _siz;
};

int edge_num(int n) {
    return (n * (n + 1)) >> 1;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);

    auto solve = [&]{
        int n;
        std::cin >> n;
        std::vector<std::vector<int>> g(n);
        for (int i = 0; i < n - 1; ++i) {
            int u, v;
            std::cin >> u >> v;
            --u, --v;
            g[u].push_back(v);
            g[v].push_back(u);
        }

        const int m = edge_num(n);

        const mint inv_m = mint(m).inv();

        SubtreeSize subtree_size { n, g };

        std::vector<mint> ans_f(n, 0);
        for (int x = 0; x < n; ++x) {
            int u_x = edge_num(n);
            for (int y : g[x]) {
                u_x -= edge_num(subtree_size(y, x));
            }
            ans_f[x] = m * mint(m - u_x).inv();
        }

        std::vector<std::vector<mint>> ans_g(n, std::vector<mint>(n));

        // par[x][y] := x を根とする木における y の親
        std::vector<std::vector<int>> par(n, std::vector<int>(n, -1));

        // x, y, A_{x,y}, B_{x,y}
        std::deque<std::tuple<int, int, mint, mint>> dq;
        for (int x = 0; x < n; ++x) {
            ans_g[x][x] = ans_f[x];

            // s_x(x)
            const int s_x_x = n;
            // u_{x,x}(x)
            int u_xx_x = edge_num(n);
            for (int y : g[x]) {
                // s_x(y)
                const int s_x_y = subtree_size(y, x);
                u_xx_x -= edge_num(s_x_y);
            }
            for (int y : g[x]) {
                // s_x(y)
                const int s_x_y = subtree_size(y, x);
                // u_{x,y}(x)
                const int u_xy_x = u_xx_x - s_x_y * (s_x_x - s_x_y);
                const mint Axy = u_xy_x * ans_f[x];
                const mint Bxy = 0;

                par[x][y] = x;
                dq.emplace_back(x, y, Axy, Bxy);
            }
        }

        while (dq.size()) {
            auto [x, y, Axy, Bxy] = dq.front();
            dq.pop_front();

            // x を根とした木における y の親
            const int par_y = par[x][y];
            // s_x(y)
            const int s_x_y = subtree_size(y, par_y);

            // u_{x,y}(y)
            int u_xy_y = edge_num(s_x_y);
            for (int w : g[y]) if (w != par_y) {
                u_xy_y -= edge_num(subtree_size(w, y));
            }
            // t_{x,y}(y)
            const int t_xy_y = s_x_y;

            ans_g[x][y] = Axy + u_xy_y * ans_f[y] + Bxy;
            // sum _ {z in Pxy-{y}} t_{x,y}(y) t_{x,y}(z) g(y,z) の計算
            int prev_z = y, z = par_y;
            while (z != x) {
                const int next_z = par[x][z];
                // t_{x,y}(z)
                // z の 1 つ前と 1 つ後が N_{x,y}(z) に含まれる頂点
                const int t_xy_z = subtree_size.t(z, prev_z, next_z);
                ans_g[x][y] += t_xy_y * t_xy_z * ans_g[y][z];
                std::tie(prev_z, z) = std::make_tuple(z, next_z);
            }
            // t_{x,y}(x)
            const int t_xy_x = subtree_size.t(x, prev_z);

            ans_g[x][y] = (1 + ans_g[x][y] * inv_m) * (1 - t_xy_x * t_xy_y * inv_m).inv();

            for (int w : g[y]) if (w != par_y) {
                // t_{x,w}(x)
                const int t_xw_x = t_xy_x;
                // s_{x}(w)
                const int s_x_w = subtree_size(w, y);
                // t_{x,w}(y)
                const int t_xw_y = t_xy_y - s_x_w;
                // u_{x,w}(y)
                const int u_xw_y = u_xy_y - s_x_w * (s_x_y - s_x_w);

                // A_{x,w}
                const mint Axw = Axy + u_xw_y * ans_f[y];
                // B_{x,w}
                mint Bxw = Bxy + t_xw_y * t_xw_x * ans_g[x][y];

                // Bxw に sum_{z in Pxy-{y}} t_{x,w}(y) * t_{x,w}(z) * g(y,z) を足して更新
                int prev_z = y, z = par_y;
                while (z != x) {
                    const int next_z = par[x][z];
                    // t_{x,w}(z)
                    const int t_xw_z = subtree_size.t(z, prev_z, next_z);
                    // t_{x,w}(y) * t_{x,w}(z) * g(y, z)
                    Bxw += t_xw_y * t_xw_z * ans_g[y][z];
                    std::tie(prev_z, z) = std::make_tuple(z, next_z);
                }

                par[x][w] = y;
                dq.emplace_back(x, w, Axw, Bxw);
            }
        }

        mint ans = 1;
        for (int x = 0; x < n; ++x) {
            for (int y = 0; y <= x; ++y) {
                ans += ans_g[x][y] * inv_m;
            }
        }
        std::cout << ans.val() << '\n';
    };

    int t;
    std::cin >> t;
    while (t --> 0) {
        solve();
    }

    return 0;
}
0