結果

問題 No.880 Yet Another Segment Tree Problem
ユーザー koba-e964
提出日時 2023-07-22 21:21:37
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 691 ms / 5,000 ms
コード長 7,761 bytes
コンパイル時間 12,919 ms
コンパイル使用メモリ 386,888 KB
実行使用メモリ 15,284 KB
最終ジャッジ日時 2024-09-22 21:01:11
合計ジャッジ時間 26,489 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use std::io::Read;
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
// Lazy Segment Tree Beats.
// Reference: https://rsm9.hatenablog.com/entry/2021/02/01/220408
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U) -> (Self::T, bool /* fail */);
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTreeBeats<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTreeBeats<R> {
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTreeBeats {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n],
lazy: vec![R::upe(); n],
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let mut ret = Self::new(a.len());
let n = ret.n;
for i in 0..a.len() {
ret.dat[n + i] = a[i];
}
for i in (1..n).rev() {
ret.update_node(i);
}
ret
}
#[inline]
pub fn set(&mut self, idx: usize, x: R::T) {
debug_assert!(idx < self.n);
self.apply_any(idx, |_t| x);
}
pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx] = f(self.dat[idx]);
for i in 1..self.dep + 1 {
self.update_node(idx >> i);
}
}
pub fn get(&mut self, idx: usize) -> R::T {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx]
}
/* [l, r) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return R::e(); }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
let mut sml = R::e();
let mut smr = R::e();
while l < r {
if (l & 1) != 0 {
sml = R::biop(sml, self.dat[l]);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
smr = R::biop(self.dat[r], smr);
}
l >>= 1;
r >>= 1;
}
R::biop(sml, smr)
}
/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */
#[inline]
pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return; }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
{
let l2 = l;
let r2 = r;
while l < r {
if (l & 1) != 0 {
self.all_apply(l, f);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
self.all_apply(r, f);
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..self.dep + 1 {
if ((l >> i) << i) != l { self.update_node(l >> i); }
if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }
}
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: R::U) {
let (dat, fail) = R::update(self.dat[k], f);
self.dat[k] = dat;
if k < self.n {
self.lazy[k] = R::upop(self.lazy[k], f);
if fail {
self.push(k);
self.update_node(k);
}
}
}
fn push(&mut self, k: usize) {
let val = self.lazy[k];
self.all_apply(2 * k, val);
self.all_apply(2 * k + 1, val);
self.lazy[k] = R::upe();
}
}
fn gcd(mut x: i64, mut y: i64) -> i64 {
while y != 0 {
let r = x % y;
x = y;
y = r;
}
x
}
enum Affine {}
type AffineInt = i64; // Change here to change type
const INF: i64 = 1 << 40;
impl ActionRing for Affine {
type T = (AffineInt, AffineInt, AffineInt, AffineInt); // data, size, max, lcm
type U = Result<AffineInt, AffineInt>; // action, Ok(g): x |-> gcd(x, g), Err(v): _x |-> v
fn biop((x, s, ma1, lcm1): Self::T, (y, t, ma2, lcm2): Self::T) -> Self::T {
let l = if lcm1 >= INF || lcm2 >= INF {
INF
} else {
let g = gcd(lcm1, lcm2);
std::cmp::min((lcm1 / g).saturating_mul(lcm2), INF)
};
(x + y, s + t, std::cmp::max(ma1, ma2), l)
}
// Complexity note: if update fails,
fn update((x, s, ma, lcm): Self::T, up: Self::U) -> (Self::T, bool) {
let g = match up {
Ok(g) => g,
Err(v) => return ((v * s, s, v, v), false),
};
if g == 0 {
return ((x, s, ma, lcm), false);
}
if x == s * ma {
// All elements are equal. Cannot fail.
let newval = gcd(ma, g);
return ((newval * s, s, newval, newval), false);
}
if lcm < INF && g % lcm == 0 {
// NOP
return ((x, s, ma, lcm), false);
}
((x, s, ma, lcm), true)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let g2 = match snd {
Ok(g) => g,
Err(_) => return snd,
};
match fst {
Ok(g) => Ok(gcd(g, g2)),
Err(v) => Err(gcd(g2, v)),
}
}
fn e() -> Self::T {
(0.into(), 0.into(), 0.into(), 1.into())
}
fn upe() -> Self::U { // identity for upop
Ok(0)
}
}
// Tags: segment-tree-beats
fn main() {
let n: usize = get();
let q: usize = get();
let a: Vec<_> = (0..n).map(|_| {
let x: i64 = get();
(x, 1, x, x)
}).collect();
let mut st = LazySegTreeBeats::<Affine>::with(&a);
for _ in 0..q {
let ty: i32 = get();
let l = get::<usize>() - 1;
let r: usize = get();
if ty == 1 || ty == 2 {
let x: i64 = get();
if ty == 1 {
st.update(l..r, Err(x));
} else {
st.update(l..r, Ok(x));
}
} else {
let val = st.query(l..r);
println!("{}", if ty == 3 { val.2 } else { val.0 });
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0