結果
| 問題 |
No.2650 [Cherry 6th Tune *] セイジャク
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-07-25 16:52:12 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 412 ms / 2,500 ms |
| コード長 | 11,856 bytes |
| コンパイル時間 | 3,657 ms |
| コンパイル使用メモリ | 111,952 KB |
| 最終ジャッジ日時 | 2025-02-15 19:00:56 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 31 |
ソースコード
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( ANSWER ) cerr << ANSWER << endl;
#define COUT( ANSWER ) cout << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH if( LibrarySearch() != 0 ){ QUIT; };
#define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES )
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( ANSWER )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH
#define START_WATCH( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES )
#endif
#include <iostream>
#include <map>
#include <cassert>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS_ )
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
void StartWatch( const string& process_name = "nothing" );
void StopWatch( const int& how_many_times = 1 );
#endif
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
// 入力フォーマットチェック用
// 1行中の変数の個数を確認
#define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); }
// 余計な入力の有無を確認
#ifdef DEBUG
#define CHECK_REDUNDANT_INPUT
#else
#define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
// #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
#endif
// |N| <= BOUNDを満たすNをSから構築
#define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }
// SをSEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }
template <int N>
class SqrtCalculation
{
public:
int m_val;
inline constexpr SqrtCalculation();
};
template <int N> inline constexpr SqrtCalculation<N>::SqrtCalculation() : m_val( 1 ) { int m_val2 = 1; while( ( m_val2 << 2 ) <= N ){ m_val <<= 1; m_val2 <<= 2; } while( m_val2 < N ){ m_val++; m_val2 = m_val * m_val; } }
#define TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION typename T , T m_T(const T&,const T&) , const T& e_T() , typename U , U o_U(const T&,const U&) , int N , int N_sqrt
// (結合的とも単位的とも限らない)基点付き可換マグマ(T,m_T:T^2->T,e_T:1->T)と基点が恒等変換に対応するT作用付き集合(U,o_U:T×U->U)と非負整数Nをパラメータとする。
// 配列による初期化O(N)
// 一点取得O(1)(可換性を使う)
// 一点更新O(N^{1/2})(可換性を使う。ただし状況次第でO(1))
// o_Uによる一点更新O(1)(可換性を使う)
// o_Uによる区間更新O(min(i_final-i_start+1,N^{1/2}))(可換性を使う)
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION = SqrtCalculation<N>{}.m_val >
class DualSqrtDecomposition
{
private:
static constexpr const int N_d = ( N + N_sqrt - 1 ) / N_sqrt;
static constexpr const int N_m = N_d * N_sqrt;
U m_a[N_m];
T m_b[N_d];
public:
static const T& g_e;
inline constexpr DualSqrtDecomposition( const U ( &a )[N] );
inline constexpr U Get( const int& i ) const;
inline constexpr void Set( const int& i , const U& u );
inline constexpr void Act( const int& i , const T& t );
inline constexpr void IntervalAct( const int& i_start , const int& i_final , const T& t );
private:
inline constexpr void IntervalAct_Body( const int& i_min , const int& i_ulim , const T& t );
};
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> const T& DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::g_e = e_T();
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> inline constexpr DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::DualSqrtDecomposition( const U ( &a )[N] ) : m_a() , m_b() { if( m_b[0] != g_e ){ for( int d = 0 ; d < N_d ; d++ ){ m_b[d] = g_e; } } for( int i = 0 ; i < N ; i++ ){ m_a[i] = a[i]; } }
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> inline constexpr U DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::Get( const int& i ) const { return o_U( m_b[i/N_sqrt] , m_a[i] ); }
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> inline constexpr void DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::Set( const int& i , const U& u )
{
U& m_ai = m_a[i];
if( m_ai != u ){
const int d = i / N_sqrt;
T& m_bd = m_b[d];
if( m_bd != g_e ){
const int i_min = d * N_sqrt;
IntervalAct_Body( i_min , i_min + N_sqrt , m_bd );
m_bd = g_e;
}
m_ai = u;
}
return;
}
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> inline constexpr void DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::Act( const int& i , const T& t ) { T& m_ai = m_a[i]; m_ai = o_U( t , m_ai ); }
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> inline constexpr void DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::IntervalAct( const int& i_start , const int& i_final , const T& t )
{
if( t != g_e ){
const int i_min = max( i_start , 0 );
const int i_ulim = min( i_final + 1 , N );
const int d_0 = ( i_min + N_sqrt - 1 ) / N_sqrt;
const int d_1 = max( d_0 , i_ulim / N_sqrt );
const int i_0 = min( d_0 * N_sqrt , i_ulim );
const int i_1 = max( i_0 , d_1 * N_sqrt );
IntervalAct_Body( i_min , i_0 , t );
for( int d = d_0 ; d < d_1 ; d++ ){
T& m_bd = m_b[d];
m_bd = m_T( t , m_bd );
}
IntervalAct_Body( i_1, i_ulim , t );
}
return;
}
template <TEMPLATE_ARGUMENTS_FOR_DUAL_SQRT_DECOMPOSITION> inline constexpr void DualSqrtDecomposition<T,m_T,e_T,U,o_U,N,N_sqrt>::IntervalAct_Body( const int& i_min , const int& i_ulim , const T& t )
{
for( int i = i_min ; i < i_ulim ; i++ ){
U& m_ai = m_a[i];
m_ai = o_U( t , m_ai );
}
return;
}
inline int max_int( const int& t0 , const int& t1 ) { return max( t0 , t1 ); }
inline const int& minus_one() { static const int n = -1; return n; }
int main()
{
UNTIE;
DEXPR( int , bound_N , 100000 , 100 );
CIN_ASSERT( N , 1 , bound_N );
CEXPR( int , bound_A , 1000000000 );
CIN_ASSERT( A , 1 , bound_A );
CEXPR( int , bound_T , bound_N );
CEXPR( int , bound_size , bound_N + bound_T * 2 );
map<int,int> TheAt{};
int X[bound_N];
FOR( n , 0 , N ){
CIN_ASSERT( Xn , 0 , A );
TheAt[ X[n] = Xn ];
}
CIN_ASSERT( T , 1 , bound_T );
int L[bound_T];
int R[bound_T];
FOR( t , 0 , T ){
CIN_ASSERT( Lt , 0 , A );
CIN_ASSERT( Rt , Lt , A );
TheAt[ L[t] = Lt ];
TheAt[ R[t] = Rt ];
}
CHECK_REDUNDANT_INPUT;
int size = 0;
FOR_ITR( TheAt ){
itr->second = size++;
}
FOR( n , 0 , N ){
int& Xn = X[n];
Xn = TheAt[Xn];
}
FOR( t , 0 , T ){
int& Lt = L[t];
int& Rt = R[t];
Lt = TheAt[Lt];
Rt = TheAt[Rt];
}
int DSD_prep[bound_size] = {};
FOR( i , 0 , size ){
DSD_prep[i] = -1;
}
DualSqrtDecomposition<int,max_int,minus_one,int,max_int,bound_size> DSD{ DSD_prep };
FOR( t , 0 , T ){
DSD.IntervalAct( L[t] , R[t] , t + 1 );
}
FOR( n , 0 , N ){
COUT( DSD.Get( X[n] ) );
}
QUIT;
}