結果

問題 No.1411 Hundreds of Conditions Sequences
ユーザー ecotteaecottea
提出日時 2023-07-26 17:28:51
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 227 ms / 2,000 ms
コード長 7,759 bytes
コンパイル時間 4,009 ms
コンパイル使用メモリ 265,252 KB
最終ジャッジ日時 2025-02-15 19:16:28
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 62
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//O(n log(log n))
/*
* n
*/
vi eratosthenes(int n) {
// : https://37zigen.com/sieve-eratosthenes/
// verify : https://judge.yosupo.jp/problem/enumerate_primes
vi ps;
// is_prime[i] : i
vb is_prime(n + 1, true);
is_prime[0] = is_prime[1] = false;
int i = 2;
// √n i
for (; i <= n / i; i++) {
if (is_prime[i]) {
ps.push_back(i);
// i*2, ..., i*(i-1) i*i
for (int j = i * i; j <= n; j += i) is_prime[j] = false;
}
}
// √n i
for (; i <= n; i++) if (is_prime[i]) ps.push_back(i);
return ps;
}
//
/*
* Osa_k(int n) : O(n log(log n))
* n
*
* map<int, int> get(int i) : O(log n)
* i
*
* bool primeQ(int i) : O(1)
* i
*/
struct Osa_k {
int n;
// d[i] : i
vi d;
// n
Osa_k(int n_) : n(n_), d(n + 1) {
// verify : https://yukicoder.me/problems/no/2207
iota(all(d), 0);
for (int p = 2; p * p <= n; p++) {
if (d[p] != p) continue;
for (int i = p; i <= n; i += p) d[i] = p;
}
}
Osa_k() : n(0) {}
// i
map<int, int> get(int i) const {
// verify : https://yukicoder.me/problems/no/2207
Assert(i <= n);
map<int, int> pps;
while (i > 1) {
pps[d[i]]++;
i /= d[i];
}
return pps;
}
// i
bool primeQ(int i) {
// verify : https://yukicoder.me/problems/no/1396
Assert(i <= n);
return d[i] == i;
}
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n;
cin >> n;
vi a(n);
cin >> a;
int m = (int)1e6;
vi ps;
Osa_k O(m);
vi e_max(m + 1, 0), i_max(m + 1, -1);
rep(i, n) {
auto pps = O.get(a[i]);
for (auto [p, e] : pps) {
if (chmax(e_max[p], e)) i_max[p] = i;
ps.push_back(p);
}
}
uniq(ps);
// dump(e_max); dump(i_max);
vi e_max2(m + 1, 0), i_max2(m + 1, -1);
rep(i, n) {
auto pps = O.get(a[i]);
for (auto [p, e] : pps) {
if (i_max[p] == i) continue;
if (chmax(e_max2[p], e)) i_max2[p] = i;
}
}
// dump(e_max2); dump(i_max2);
mint L = 1;
repe(p, ps) L *= mint(p).pow(e_max[p]);
// dump(L);
vm ls(n, L);
repe(p, ps) ls[i_max[p]] /= mint(p).pow(e_max[p] - e_max2[p]);
// dump(ls);
vm acc_l(n + 1, 1), acc_r(n + 1, 1);
rep(i, n) acc_l[i + 1] = acc_l[i] * a[i];
repir(i, n - 1, 0) acc_r[i] = a[i] * acc_r[i + 1];
vm res(n);
rep(i, n) res[i] = acc_l[i] * acc_r[i + 1] - ls[i];
rep(i, n) cout << res[i] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0