結果
問題 | No.2395 区間二次変換一点取得 |
ユーザー | 👑 emthrm |
提出日時 | 2023-07-28 21:35:34 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 73 ms / 2,000 ms |
コード長 | 6,658 bytes |
コンパイル時間 | 3,024 ms |
コンパイル使用メモリ | 251,668 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-06 17:55:33 |
合計ジャッジ時間 | 5,412 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 3 ms
6,820 KB |
testcase_12 | AC | 8 ms
6,816 KB |
testcase_13 | AC | 72 ms
6,820 KB |
testcase_14 | AC | 72 ms
6,816 KB |
testcase_15 | AC | 73 ms
6,820 KB |
testcase_16 | AC | 73 ms
6,816 KB |
testcase_17 | AC | 73 ms
6,820 KB |
testcase_18 | AC | 63 ms
6,816 KB |
testcase_19 | AC | 63 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int ID> struct MInt { unsigned int v; constexpr MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {} static constexpr MInt raw(const int x) { MInt x_; x_.v = x; return x_; } static int get_mod() { return mod(); } static void set_mod(const unsigned int divisor) { mod() = divisor; } static void init(const int x) { inv<true>(x); fact(x); fact_inv(x); } template <bool MEMOIZES = false> static MInt inv(const int n) { // assert(0 <= n && n < mod() && std::gcd(x, mod()) == 1); static std::vector<MInt> inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[mod() % i] * raw(mod() / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = mod(); b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector<MInt> factorial{1}; if (const int prev = factorial.size(); n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector<MInt> f_inv{1}; if (const int prev = f_inv.size(); n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); inv<true>(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if ((v += x.v) >= mod()) v -= mod(); return *this; } MInt& operator-=(const MInt& x) { if ((v += mod() - x.v) >= mod()) v -= mod(); return *this; } MInt& operator*=(const MInt& x) { v = (unsigned long long){v} * x.v % mod(); return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } auto operator<=>(const MInt& x) const = default; MInt& operator++() { if (++v == mod()) [[unlikely]] v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? mod() - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return raw(v ? mod() - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } private: static unsigned int& mod() { static unsigned int divisor = 0; return divisor; } }; template <typename Abelian> struct FenwickTreeSupportingRangeAddQuery { explicit FenwickTreeSupportingRangeAddQuery( const int n_, const Abelian ID = 0) : n(n_ + 1), ID(ID) { data_const.assign(n, ID); data_linear.assign(n, ID); } void add(int left, const int right, const Abelian val) { if (right < ++left) [[unlikely]] return; for (int i = left; i < n; i += i & -i) { data_const[i] -= val * (left - 1); data_linear[i] += val; } for (int i = right + 1; i < n; i += i & -i) { data_const[i] += val * right; data_linear[i] -= val; } } Abelian sum(const int idx) const { Abelian res = ID; for (int i = idx; i > 0; i -= i & -i) { res += data_linear[i]; } res *= idx; for (int i = idx; i > 0; i -= i & -i) { res += data_const[i]; } return res; } Abelian sum(const int left, const int right) const { return left < right ? sum(right) - sum(left) : ID; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } private: const int n; const Abelian ID; std::vector<Abelian> data_const, data_linear; }; int main() { using ModInt = MInt<0>; int n, b, q; cin >> n >> b >> q; ModInt::set_mod(b); vector<ModInt> x(q + 1, 1), y(q + 1, 1), z(q + 1, 1); FOR(i, 1, q + 1) { x[i] = x[i - 1] + 1; y[i] = y[i - 1] * 3 + x[i] * z[i - 1] * 2; z[i] = z[i - 1] * 3; } FenwickTreeSupportingRangeAddQuery<ll> bit(n); REP(i, q) { int l, m, r; cin >> l >> m >> r; --l; --m; --r; bit.add(l, r + 1, 1); const int num = bit[m]; cout << x[num] << ' ' << y[num] << ' ' << z[num] << '\n'; } return 0; }