結果

問題 No.2395 区間二次変換一点取得
ユーザー 👑 emthrmemthrm
提出日時 2023-07-28 21:35:34
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 73 ms / 2,000 ms
コード長 6,658 bytes
コンパイル時間 3,024 ms
コンパイル使用メモリ 251,668 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-06 17:55:33
合計ジャッジ時間 5,412 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 3 ms
6,820 KB
testcase_12 AC 8 ms
6,816 KB
testcase_13 AC 72 ms
6,820 KB
testcase_14 AC 72 ms
6,816 KB
testcase_15 AC 73 ms
6,820 KB
testcase_16 AC 73 ms
6,816 KB
testcase_17 AC 73 ms
6,820 KB
testcase_18 AC 63 ms
6,816 KB
testcase_19 AC 63 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int ID>
struct MInt {
  unsigned int v;

  constexpr MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}
  static constexpr MInt raw(const int x) {
    MInt x_;
    x_.v = x;
    return x_;
  }

  static int get_mod() { return mod(); }
  static void set_mod(const unsigned int divisor) { mod() = divisor; }

  static void init(const int x) {
    inv<true>(x);
    fact(x);
    fact_inv(x);
  }

  template <bool MEMOIZES = false>
  static MInt inv(const int n) {
    // assert(0 <= n && n < mod() && std::gcd(x, mod()) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) return inverse[n];
    if constexpr (MEMOIZES) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[mod() % i] * raw(mod() / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = mod(); b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }

  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    if (const int prev = factorial.size(); n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }

  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    if (const int prev = f_inv.size(); n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }

  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
  }

  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
    inv<true>(k);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }

  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }

  MInt& operator+=(const MInt& x) {
    if ((v += x.v) >= mod()) v -= mod();
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if ((v += mod() - x.v) >= mod()) v -= mod();
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = (unsigned long long){v} * x.v % mod();
    return *this;
    }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }

  auto operator<=>(const MInt& x) const = default;

  MInt& operator++() {
    if (++v == mod()) [[unlikely]] v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? mod() - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }

  MInt operator+() const { return *this; }
  MInt operator-() const { return raw(v ? mod() - v : 0); }

  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }

  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }

 private:
  static unsigned int& mod() {
    static unsigned int divisor = 0;
    return divisor;
  }
};

template <typename Abelian>
struct FenwickTreeSupportingRangeAddQuery {
  explicit FenwickTreeSupportingRangeAddQuery(
      const int n_, const Abelian ID = 0)
      : n(n_ + 1), ID(ID) {
    data_const.assign(n, ID);
    data_linear.assign(n, ID);
  }

  void add(int left, const int right, const Abelian val) {
    if (right < ++left) [[unlikely]] return;
    for (int i = left; i < n; i += i & -i) {
      data_const[i] -= val * (left - 1);
      data_linear[i] += val;
    }
    for (int i = right + 1; i < n; i += i & -i) {
      data_const[i] += val * right;
      data_linear[i] -= val;
    }
  }

  Abelian sum(const int idx) const {
    Abelian res = ID;
    for (int i = idx; i > 0; i -= i & -i) {
      res += data_linear[i];
    }
    res *= idx;
    for (int i = idx; i > 0; i -= i & -i) {
      res += data_const[i];
    }
    return res;
  }

  Abelian sum(const int left, const int right) const {
    return left < right ? sum(right) - sum(left) : ID;
  }

  Abelian operator[](const int idx) const { return sum(idx, idx + 1); }

 private:
  const int n;
  const Abelian ID;
  std::vector<Abelian> data_const, data_linear;
};

int main() {
  using ModInt = MInt<0>;
  int n, b, q; cin >> n >> b >> q;
  ModInt::set_mod(b);
  vector<ModInt> x(q + 1, 1), y(q + 1, 1), z(q + 1, 1);
  FOR(i, 1, q + 1) {
    x[i] = x[i - 1] + 1;
    y[i] = y[i - 1] * 3 + x[i] * z[i - 1] * 2;
    z[i] = z[i - 1] * 3;
  }
  FenwickTreeSupportingRangeAddQuery<ll> bit(n);
  REP(i, q) {
    int l, m, r; cin >> l >> m >> r; --l; --m; --r;
    bit.add(l, r + 1, 1);
    const int num = bit[m];
    cout << x[num] << ' ' << y[num] << ' ' << z[num] << '\n';
  }
  return 0;
}
0