結果
| 問題 |
No.2395 区間二次変換一点取得
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2023-07-28 21:35:34 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 73 ms / 2,000 ms |
| コード長 | 6,658 bytes |
| コンパイル時間 | 3,024 ms |
| コンパイル使用メモリ | 251,668 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-06 17:55:33 |
| 合計ジャッジ時間 | 5,412 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int ID>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static int get_mod() { return mod(); }
static void set_mod(const unsigned int divisor) { mod() = divisor; }
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < mod() && std::gcd(x, mod()) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[mod() % i] * raw(mod() / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = mod(); b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= mod()) v -= mod();
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += mod() - x.v) >= mod()) v -= mod();
return *this;
}
MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % mod();
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
auto operator<=>(const MInt& x) const = default;
MInt& operator++() {
if (++v == mod()) [[unlikely]] v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? mod() - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return raw(v ? mod() - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
private:
static unsigned int& mod() {
static unsigned int divisor = 0;
return divisor;
}
};
template <typename Abelian>
struct FenwickTreeSupportingRangeAddQuery {
explicit FenwickTreeSupportingRangeAddQuery(
const int n_, const Abelian ID = 0)
: n(n_ + 1), ID(ID) {
data_const.assign(n, ID);
data_linear.assign(n, ID);
}
void add(int left, const int right, const Abelian val) {
if (right < ++left) [[unlikely]] return;
for (int i = left; i < n; i += i & -i) {
data_const[i] -= val * (left - 1);
data_linear[i] += val;
}
for (int i = right + 1; i < n; i += i & -i) {
data_const[i] += val * right;
data_linear[i] -= val;
}
}
Abelian sum(const int idx) const {
Abelian res = ID;
for (int i = idx; i > 0; i -= i & -i) {
res += data_linear[i];
}
res *= idx;
for (int i = idx; i > 0; i -= i & -i) {
res += data_const[i];
}
return res;
}
Abelian sum(const int left, const int right) const {
return left < right ? sum(right) - sum(left) : ID;
}
Abelian operator[](const int idx) const { return sum(idx, idx + 1); }
private:
const int n;
const Abelian ID;
std::vector<Abelian> data_const, data_linear;
};
int main() {
using ModInt = MInt<0>;
int n, b, q; cin >> n >> b >> q;
ModInt::set_mod(b);
vector<ModInt> x(q + 1, 1), y(q + 1, 1), z(q + 1, 1);
FOR(i, 1, q + 1) {
x[i] = x[i - 1] + 1;
y[i] = y[i - 1] * 3 + x[i] * z[i - 1] * 2;
z[i] = z[i - 1] * 3;
}
FenwickTreeSupportingRangeAddQuery<ll> bit(n);
REP(i, q) {
int l, m, r; cin >> l >> m >> r; --l; --m; --r;
bit.add(l, r + 1, 1);
const int num = bit[m];
cout << x[num] << ' ' << y[num] << ' ' << z[num] << '\n';
}
return 0;
}
emthrm