結果
問題 | No.2396 等差二項展開 |
ユーザー | hotman78 |
提出日時 | 2023-07-28 21:49:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 36,315 bytes |
コンパイル時間 | 7,404 ms |
コンパイル使用メモリ | 316,092 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-06 18:25:07 |
合計ジャッジ時間 | 11,528 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 4 ms
6,816 KB |
testcase_14 | AC | 5 ms
6,820 KB |
testcase_15 | AC | 30 ms
6,816 KB |
testcase_16 | AC | 118 ms
6,816 KB |
testcase_17 | AC | 274 ms
6,816 KB |
testcase_18 | AC | 367 ms
6,816 KB |
testcase_19 | AC | 367 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 2 ms
6,820 KB |
testcase_22 | WA | - |
testcase_23 | AC | 222 ms
6,820 KB |
testcase_24 | AC | 292 ms
6,816 KB |
testcase_25 | AC | 360 ms
6,816 KB |
testcase_26 | AC | 286 ms
6,820 KB |
testcase_27 | AC | 292 ms
6,816 KB |
testcase_28 | AC | 348 ms
6,816 KB |
testcase_29 | AC | 298 ms
6,820 KB |
testcase_30 | AC | 228 ms
6,816 KB |
ソースコード
// author: hotman78 // date: 2023/07/28-21:49:42 // --- begin raw code ----------------- // #include"cpplib/util/template.hpp" // #include"cpplib/math/ACL_modint.hpp" // #include"cpplib/math/ACL_convolution.hpp" // // // int main(){ // lint n,m,l,k,b; // cin>>n>>m>>l>>k>>b; // mint::set_mod(b); // vector<mint>v={1}; // auto f=[&](auto s,auto t){ // auto res=convolution(s,t); // for(int i=l;i<res.size();i++){ // res[i%l]+=res[i]*m; // } // res.resize(l); // return res; // }; // { // lint tmp=n; // vector<mint>a={1,1}; // while(tmp){ // if(tmp%2){ // v=f(v,a); // } // a=f(a,a); // tmp/=2; // } // } // cout<<v[k]<<endl; // // } // --- end raw code ----------------- #line 2 "cpplib/util/template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC target("avx2") #include <bits/stdc++.h> using namespace std; #line 1 "cpplib/util/ioutil.hpp" // template <class Head,class... Args> // std::ostream& output(std::ostream& out,const Head& head,const Args&... args){ // out>>head; // return output(head,args...); // } // template <class Head> // std::ostream& output(std::ostream& out,const Head& head){ // out>>head; // return out; // } template <typename T, typename E> std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) { out << "(" << v.first << "," << v.second << ")"; return out; } // template <class... Args> // ostream& operator<<(ostream& out,std::tuple<Args...>v){ // std::apply(output,v); // return out; // } #line 8 "cpplib/util/template.hpp" struct __INIT__ { __INIT__() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } __INIT__; typedef long long lint; constexpr long long INF = 1LL << 60; constexpr int IINF = 1 << 30; constexpr double EPS = 1e-10; #ifndef REACTIVE #define endl '\n'; #endif typedef vector<lint> vec; typedef vector<vector<lint>> mat; typedef vector<vector<vector<lint>>> mat3; typedef vector<string> svec; typedef vector<vector<string>> smat; template <typename T> using V = vector<T>; template <typename T> using VV = V<V<T>>; template <typename T> inline void output(T t) { bool f = 0; for (auto i : t) { cout << (f ? " " : "") << i; f = 1; } cout << endl; } template <typename T> inline void output2(T t) { for (auto i : t) output(i); } template <typename T> inline void debug(T t) { bool f = 0; for (auto i : t) { cerr << (f ? " " : "") << i; f = 1; } cerr << endl; } template <typename T> inline void debug2(T t) { for (auto i : t) debug(i); } #define loop(n) for (long long _ = 0; _ < (long long)(n); ++_) #define _overload4(_1, _2, _3, _4, name, ...) name #define __rep(i, a) repi(i, 0, a, 1) #define _rep(i, a, b) repi(i, a, b, 1) #define repi(i, a, b, c) \ for (long long i = (long long)(a); i < (long long)(b); i += c) #define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__) #define _overload3_rev(_1, _2, _3, name, ...) name #define _rep_rev(i, a) repi_rev(i, 0, a) #define repi_rev(i, a, b) \ for (long long i = (long long)(b)-1; i >= (long long)(a); --i) #define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__) #define all(n) begin(n), end(n) template <typename T, typename E> bool chmin(T &s, const E &t) { bool res = s > t; s = min<T>(s, t); return res; } template <typename T, typename E> bool chmax(T &s, const E &t) { bool res = s < t; s = max<T>(s, t); return res; } const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1}; const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1}; #define SUM(v) accumulate(all(v), 0LL) #if __cplusplus >= 201703L template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) { if constexpr (sizeof...(args) == 0) return vector<T>(arg, x); else return vector(arg, make_vector<T>(x, args...)); } #endif #define extrep(v, ...) for (auto v : __MAKE_MAT__({__VA_ARGS__})) #define bit(n, a) ((n >> a) & 1) vector<vector<long long>> __MAKE_MAT__(vector<long long> v) { if (v.empty()) return vector<vector<long long>>(1, vector<long long>()); long long n = v.back(); v.pop_back(); vector<vector<long long>> ret; vector<vector<long long>> tmp = __MAKE_MAT__(v); for (auto e : tmp) for (long long i = 0; i < n; ++i) { ret.push_back(e); ret.back().push_back(i); } return ret; } using graph = vector<vector<int>>; template <typename T> using graph_w = vector<vector<pair<int, T>>>; #if __cplusplus >= 201703L constexpr inline long long powll(long long a, long long b) { long long res = 1; while (b--) res *= a; return res; } #endif template <typename T, typename E> pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) { s.first += t.first; s.second += t.second; return s; } template <typename T, typename E> pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) { s.first -= t.first; s.second -= t.second; return s; } template <typename T, typename E> pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) { auto res = s; return res += t; } template <typename T, typename E> pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) { auto res = s; return res -= t; } #define BEGIN_STACK_EXTEND(size) \ void *stack_extend_memory_ = malloc(size); \ void *stack_extend_origin_memory_; \ char *stack_extend_dummy_memory_ = (char *)alloca( \ (1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \ *stack_extend_dummy_memory_ = 0; \ asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \ : "=b"(stack_extend_origin_memory_) \ : "a"((char *)stack_extend_memory_ + (size)-1024)); #define END_STACK_EXTEND \ asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \ free(stack_extend_memory_); #line 2 "cpplib/math/ACL_modint.hpp" #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint &operator*=(const mint &rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using mint = atcoder::modint; #line 4 "cpplib/math/ACL_modint_base.hpp" std::ostream &operator<<(std::ostream &lhs, const mint &rhs) noexcept { lhs << rhs.val(); return lhs; } std::istream &operator>>(std::istream &lhs, mint &rhs) noexcept { long long x; lhs >> x; rhs = x; return lhs; } int MOD_NOW = -1; int sz = 0; std::vector<mint> fact_table, fact_inv_table; void update(int x) { if (MOD_NOW != mint::mod() || sz == 0) { fact_table.assign(1, 1); fact_inv_table.assign(1, 1); sz = 1; MOD_NOW = mint::mod(); } while (sz <= x) { fact_table.resize(sz * 2); fact_inv_table.resize(sz * 2); for (int i = sz; i < sz * 2; ++i) { fact_table[i] = fact_table[i - 1] * i; } fact_inv_table[sz * 2 - 1] = fact_table[sz * 2 - 1].inv(); for (int i = sz * 2 - 2; i >= sz; --i) { fact_inv_table[i] = fact_inv_table[i + 1] * (i + 1); } sz *= 2; } } inline mint fact(int x) { assert(x >= 0); update(x); return fact_table[x]; } inline mint fact_inv(int x) { assert(x >= 0); update(x); return fact_inv_table[x]; } inline mint comb(int x, int y) { if (x < 0 || x < y || y < 0) return 0; return fact(x) * fact_inv(y) * fact_inv(x - y); } inline mint perm(int x, int y) { return fact(x) * fact_inv(x - y); } inline mint multi_comb(int x, int y) { return comb(x + y - 1, y); } #line 2 "cpplib/math/ACL_convolution.hpp" #include <algorithm> #include <array> #include <cassert> #include <type_traits> #include <vector> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { template <class mint, int g = internal::primitive_root<mint::mod()>, internal::is_static_modint_t<mint> * = nullptr> struct fft_info { static constexpr int rank2 = bsf_constexpr(mint::mod() - 1); std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<mint, std::max(0, rank2 - 2 + 1)> rate2; std::array<mint, std::max(0, rank2 - 2 + 1)> irate2; std::array<mint, std::max(0, rank2 - 3 + 1)> rate3; std::array<mint, std::max(0, rank2 - 3 + 1)> irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template <class mint, internal::is_static_modint_t<mint> * = nullptr> void butterfly(std::vector<mint> &a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template <class mint, internal::is_static_modint_t<mint> * = nullptr> void butterfly_inv(std::vector<mint> &a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val(); ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val(); } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } template <class mint, internal::is_static_modint_t<mint> * = nullptr> std::vector<mint> convolution_naive(const std::vector<mint> &a, const std::vector<mint> &b) { int n = int(a.size()), m = int(b.size()); std::vector<mint> ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template <class mint, internal::is_static_modint_t<mint> * = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint> * = nullptr> std::vector<mint> convolution(std::vector<mint> &&a, std::vector<mint> &&b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint> * = nullptr> std::vector<mint> convolution(const std::vector<mint> &a, const std::vector<mint> &b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value> * = nullptr> std::vector<T> convolution(const std::vector<T> &a, const std::vector<T> &b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long> &a, const std::vector<long long> &b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 2 "cpplib/math/mod_pow.hpp" /** * @brief (x^y)%mod */ long long mod_pow(long long x, long long y, long long mod) { long long ret = 1; while (y > 0) { if (y & 1) (ret *= x) %= mod; (x *= x) %= mod; y >>= 1; } return ret; } #line 4 "cpplib/math/garner.hpp" /** * * @brief ガーナーのアルゴリズム * */ long long garner(const std::vector<long long> &a, const std::vector<long long> &mods) { const int sz = a.size(); long long coeffs[sz + 1] = {1, 1, 1, 1}; long long constants[sz + 1] = {}; for (int i = 0; i < sz; i++) { long long v = (mods[i] + a[i] - constants[i]) % mods[i] * mod_pow(coeffs[i], mods[i] - 2, mods[i]) % mods[i]; for (int j = i + 1; j < sz + 1; j++) { constants[j] = (constants[j] + coeffs[j] * v) % mods[j]; coeffs[j] = (coeffs[j] * mods[i]) % mods[j]; } } return constants[sz]; } #line 1 "cpplib/math/ceil_pow2.hpp" int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } #line 6 "cpplib/math/ACL_convolution.hpp" #line 8 "cpplib/math/ACL_convolution.hpp" template <typename Mint> std::vector<Mint> convolution(const std::vector<Mint> &_s, const std::vector<Mint> &_t) { using T = std::vector<Mint>; if (_s.size() == 0 || _t.size() == 0) return T(); const size_t sz = _s.size() + _t.size() - 1; std::vector<atcoder::static_modint<1224736769>> s1(_s.size()), t1(_t.size()); std::vector<atcoder::static_modint<1045430273>> s2(_s.size()), t2(_t.size()); std::vector<atcoder::static_modint<1007681537>> s3(_s.size()), t3(_t.size()); for (size_t i = 0; i < _s.size(); ++i) { s1[i] = _s[i].val(); s2[i] = _s[i].val(); s3[i] = _s[i].val(); } for (size_t i = 0; i < _t.size(); ++i) { t1[i] = _t[i].val(); t2[i] = _t[i].val(); t3[i] = _t[i].val(); } auto v1 = atcoder::convolution(s1, t1); auto v2 = atcoder::convolution(s2, t2); auto v3 = atcoder::convolution(s3, t3); T v(sz); for (size_t i = 0; i < sz; ++i) { v[i] = garner( std::vector<long long>{v1[i].val(), v2[i].val(), v3[i].val()}, std::vector<long long>{1224736769, 1045430273, 1007681537, (long long)Mint::mod()}); } return v; } #line 4 "main.cpp" int main() { lint n, m, l, k, b; cin >> n >> m >> l >> k >> b; mint::set_mod(b); vector<mint> v = {1}; auto f = [&](auto s, auto t) { auto res = convolution(s, t); for (int i = l; i < res.size(); i++) { res[i % l] += res[i] * m; } res.resize(l); return res; }; { lint tmp = n; vector<mint> a = {1, 1}; while (tmp) { if (tmp % 2) { v = f(v, a); } a = f(a, a); tmp /= 2; } } cout << v[k] << endl; }