結果
問題 | No.2395 区間二次変換一点取得 |
ユーザー |
|
提出日時 | 2023-07-28 21:51:29 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 118 ms / 2,000 ms |
コード長 | 14,848 bytes |
コンパイル時間 | 2,257 ms |
コンパイル使用メモリ | 205,452 KB |
最終ジャッジ日時 | 2025-02-15 20:17:10 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < (n); i++)#define per(i, n) for (int i = (n)-1; i >= 0; i--)#define rep2(i, l, r) for (int i = (l); i < (r); i++)#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)#define each(e, v) for (auto &e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()using ll = long long;using pii = pair<int, int>;using pil = pair<int, ll>;using pli = pair<ll, int>;using pll = pair<ll, ll>;template <typename T>using minheap = priority_queue<T, vector<T>, greater<T>>;template <typename T>using maxheap = priority_queue<T>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <typename T>int flg(T x, int i) {return (x >> i) & 1;}int pct(int x) { return __builtin_popcount(x); }int pct(ll x) { return __builtin_popcountll(x); }int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}template <typename T>void printn(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << '\n';}template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}template <typename T>vector<int> id_sort(const vector<T> &v, bool greater = false) {int n = v.size();vector<int> ret(n);iota(begin(ret), end(ret), 0);sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });return ret;}template <typename T>void reorder(vector<T> &a, const vector<int> &ord) {int n = a.size();vector<T> b(n);for (int i = 0; i < n; i++) b[i] = a[ord[i]];swap(a, b);}template <typename T>T floor(T x, T y) {assert(y != 0);if (y < 0) x = -x, y = -y;return (x >= 0 ? x / y : (x - y + 1) / y);}template <typename T>T ceil(T x, T y) {assert(y != 0);if (y < 0) x = -x, y = -y;return (x >= 0 ? (x + y - 1) / y : x / y);}template <typename S, typename T>pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first + q.first, p.second + q.second);}template <typename S, typename T>pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first - q.first, p.second - q.second);}template <typename S, typename T>istream &operator>>(istream &is, pair<S, T> &p) {S a;T b;is >> a >> b;p = make_pair(a, b);return is;}template <typename S, typename T>ostream &operator<<(ostream &os, const pair<S, T> &p) {return os << p.first << ' ' << p.second;}struct io_setup {io_setup() {ios_base::sync_with_stdio(false);cin.tie(NULL);cout << fixed << setprecision(15);}} io_setup;constexpr int inf = (1 << 30) - 1;constexpr ll INF = (1LL << 60) - 1;// constexpr int MOD = 1000000007;constexpr int MOD = 998244353;// sumtemplate <typename T>struct Plus_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return a + b; };static const V id;};template <typename T>const T Plus_Monoid<T>::id = 0;// prodtemplate <typename T>struct Product_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return a * b; };static const V id;};template <typename T>const T Product_Monoid<T>::id = 1;// mintemplate <typename T>struct Min_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return min(a, b); };static const V id;};template <typename T>constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;// maxtemplate <typename T>struct Max_Monoid {using V = T;static constexpr V merge(V a, V b) { return max(a, b); };static const V id;};template <typename T>constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);// 代入template <typename T>struct Update_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) {if (a == id) return b;if (b == id) return a;return b;}static const V id;};template <typename T>constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();// min count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Min_Count_Monoid {using V = pair<T, S>;static constexpr V merge(const V &a, const V &b) {if (a.first < b.first) return a;if (a.first > b.first) return b;return V(a.first, a.second + b.second);}static const V id;};template <typename T, typename S>constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);// max count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Max_Count_Monoid {using V = pair<T, S>;static constexpr V merge(const V &a, const V &b) {if (a.first > b.first) return a;if (a.first < b.first) return b;return V(a.first, a.second + b.second);}static const V id;};template <typename T, typename S>constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);// 一次関数 ax+b の合成 (左から順に作用)template <typename T>struct Affine_Monoid {using V = pair<T, T>;static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };static const V id;};template <typename T>const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);// モノイドの直積template <typename Monoid_1, typename Monoid_2>struct Cartesian_Product_Monoid {using V1 = typename Monoid_1::V;using V2 = typename Monoid_2::V;using V = pair<V1, V2>;static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }static const V id;};template <typename Monoid_1, typename Monoid_2>const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);// range add range mintemplate <typename T>struct Min_Plus_Acted_Monoid {using Monoid = Min_Monoid<T>;using Operator = Plus_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return a + b; };};// range add range maxtemplate <typename T>struct Max_Plus_Acted_Monoid {using Monoid = Max_Monoid<T>;using Operator = Plus_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return a + b; };};// range add range min count (T:最小値の型、S:個数の型)template <typename T, typename S>struct Min_Count_Add_Acted_Monoid {using Monoid = Min_Count_Monoid<T, S>;using Operator = Plus_Monoid<T>;using M = pair<T, S>;using O = T;static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };};// range add range max count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Max_Count_Add_Acted_Monoid {using Monoid = Max_Count_Monoid<T, S>;using Operator = Plus_Monoid<T>;using M = pair<T, S>;using O = T;static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };};// range add range sumtemplate <typename T>struct Plus_Plus_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;using Operator = Plus_Monoid<T>;using M = pair<T, int>;using O = T;static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }};// range update range sumtemplate <typename T>struct Plus_Update_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;using Operator = Update_Monoid<T>;using M = pair<T, int>;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }};// range update range mintemplate <typename T>struct Min_Update_Acted_Monoid {using Monoid = Min_Monoid<T>;using Operator = Update_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }};// range update range maxtemplate <typename T>struct Max_Update_Acted_Monoid {using Monoid = Max_Monoid<T>;using Operator = Update_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }};// range affine range sumtemplate <typename T>struct Plus_Affine_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;using Operator = Affine_Monoid<T>;using M = pair<T, T>;using O = pair<T, T>;static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };};template <typename Operator>struct Dual_Segment_Tree {using O = typename Operator::V;int n, m, height;vector<O> lazy;Dual_Segment_Tree(int n) : n(n) {m = 1, height = 0;while (m < n) m <<= 1, height++;lazy.assign(2 * m, Operator::id);}inline void eval(int i) {if (i < m) {lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);lazy[i] = Operator::id;}}inline void thrust(int i) {for (int j = height; j > 0; j--) eval(i >> j);}void update(int l, int r, const O &x) {l = max(l, 0), r = min(r, n);if (l >= r) return;l += m, r += m;thrust(l), thrust(r - 1);while (l < r) {if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);l >>= 1, r >>= 1;}}O get(int i) {thrust(i + m);return lazy[i + m];}O operator[](int i) { return get(i); }};struct Random_Number_Generator {mt19937_64 mt;Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}// [l,r) での一様乱数int64_t operator()(int64_t l, int64_t r) {uniform_int_distribution<int64_t> dist(l, r - 1);return dist(mt);}// [0,r) での一様乱数int64_t operator()(int64_t r) { return (*this)(0, r); }} rng;long long modpow(long long x, long long n, const int &m) {x %= m;long long ret = 1;for (; n > 0; n >>= 1, x *= x, x %= m) {if (n & 1) ret *= x, ret %= m;}return ret;}template <typename T>T modinv(T a, const T &m) {T b = m, u = 1, v = 0;while (b > 0) {T t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return u >= 0 ? u % m : (m - (-u) % m) % m;}// ax ≡ b (mod M) を満たす非負整数 x は (存在するなら) 等差数列となる。// (最小解, 公差) を求める。存在しない場合は (-1, -1)template <typename T>pair<T, T> linear_equation(T a, T b, T m) {a %= m, b %= m;if (a < 0) a += m;if (b < 0) b += m;T g = gcd(a, m);if (b % g != 0) return {-1, -1};if (a == 0) return {0, 1};a /= g, b /= g, m /= g;return {b * modinv(a, m) % m, m};}// オイラーの φ 関数 (x と m が互いに素ならば、x^φ(m) ≡ 1 (mod m))template <typename T>T Euler_totient(T m) {T ret = m;for (T i = 2; i * i <= m; i++) {if (m % i == 0) ret /= i, ret *= i - 1;while (m % i == 0) m /= i;}if (m > 1) ret /= m, ret *= m - 1;return ret;}// x^k ≡ y (mod m) となる最小の非負整数 k (存在しなければ -1)int modlog(int x, int y, int m, int max_ans = -1) {if (max_ans == -1) max_ans = m;long long g = 1;for (int i = m; i > 0; i >>= 1) g *= x, g %= m;g = gcd(g, m);int c = 0;long long t = 1;for (; t % g != 0; c++) {if (t == y) return c;t *= x, t %= m;}if (y % g != 0) return -1;t /= g, y /= g, m /= g;int n = 0;long long gs = 1;for (; n * n < max_ans; n++) gs *= x, gs %= m;unordered_map<int, int> mp;long long e = y;for (int i = 0; i < n; mp[e] = ++i) e *= x, e %= m;e = t;for (int i = 0; i < n; i++) {e *= gs, e %= m;if (mp.count(e)) return c + n * (i + 1) - mp[e];}return -1;}// x^k ≡ 1 (mod m) となる最小の正整数 k (x と m は互いに素)template <typename T>T order(T x, const T &m) {T n = Euler_totient(m);vector<T> ds;for (T i = 1; i * i <= n; i++) {if (n % i == 0) ds.push_back(i), ds.push_back(n / i);}sort(begin(ds), end(ds));for (auto &e : ds) {if (modpow(x, e, m) == 1) return e;}return -1;}// 素数 p の原始根template <typename T>T primitive_root(const T &p) {vector<T> ds;for (T i = 1; i * i <= p - 1; i++) {if ((p - 1) % i == 0) ds.push_back(i), ds.push_back((p - 1) / i);}sort(begin(ds), end(ds));while (true) {T r = rng(1, p);for (auto &e : ds) {if (e == p - 1) return r;if (modpow(r, e, p) == 1) break;}}}void solve() {int N, M, Q;cin >> N >> M >> Q;Dual_Segment_Tree<Plus_Monoid<int>> seg(N);auto get = [&](ll k) {assert(k >= 1);ll p = modpow(3, k - 1, M);ll x = p * 3 % M;ll y = p * 2 * k % M;ll z = k * (k + 1) % M;z *= p, z %= M;ll X = (k + 1) % M;ll Y = (x + y + z) % M;ll Z = p * 3 % M;cout << X MM Y MM Z << '\n';};while (Q--) {int l, m, r;cin >> l >> m >> r;l--, m--;seg.update(l, r, 1);get(seg[m]);}}int main() {int T = 1;// cin >> T;while (T--) solve();}