結果

問題 No.2395 区間二次変換一点取得
ユーザー tokusakuraitokusakurai
提出日時 2023-07-28 21:51:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 118 ms / 2,000 ms
コード長 14,848 bytes
コンパイル時間 2,257 ms
コンパイル使用メモリ 205,452 KB
最終ジャッジ日時 2025-02-15 20:17:10
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
// sum
template <typename T>
struct Plus_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return a + b; };
static const V id;
};
template <typename T>
const T Plus_Monoid<T>::id = 0;
// prod
template <typename T>
struct Product_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return a * b; };
static const V id;
};
template <typename T>
const T Product_Monoid<T>::id = 1;
// min
template <typename T>
struct Min_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return min(a, b); };
static const V id;
};
template <typename T>
constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;
// max
template <typename T>
struct Max_Monoid {
using V = T;
static constexpr V merge(V a, V b) { return max(a, b); };
static const V id;
};
template <typename T>
constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);
//
template <typename T>
struct Update_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) {
if (a == id) return b;
if (b == id) return a;
return b;
}
static const V id;
};
template <typename T>
constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();
// min count (TS)
template <typename T, typename S>
struct Min_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(const V &a, const V &b) {
if (a.first < b.first) return a;
if (a.first > b.first) return b;
return V(a.first, a.second + b.second);
}
static const V id;
};
template <typename T, typename S>
constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);
// max count (TS)
template <typename T, typename S>
struct Max_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(const V &a, const V &b) {
if (a.first > b.first) return a;
if (a.first < b.first) return b;
return V(a.first, a.second + b.second);
}
static const V id;
};
template <typename T, typename S>
constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);
// ax+b ()
template <typename T>
struct Affine_Monoid {
using V = pair<T, T>;
static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };
static const V id;
};
template <typename T>
const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);
//
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
using V1 = typename Monoid_1::V;
using V2 = typename Monoid_2::V;
using V = pair<V1, V2>;
static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }
static const V id;
};
template <typename Monoid_1, typename Monoid_2>
const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);
// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return a + b; };
};
// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return a + b; };
};
// range add range min count (TS)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
using Monoid = Min_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};
// range add range max count (TS)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
using Monoid = Max_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};
// range add range sum
template <typename T>
struct Plus_Plus_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Plus_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }
};
// range update range sum
template <typename T>
struct Plus_Update_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Update_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }
};
// range update range min
template <typename T>
struct Min_Update_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};
// range update range max
template <typename T>
struct Max_Update_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};
// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
using Operator = Affine_Monoid<T>;
using M = pair<T, T>;
using O = pair<T, T>;
static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };
};
template <typename Operator>
struct Dual_Segment_Tree {
using O = typename Operator::V;
int n, m, height;
vector<O> lazy;
Dual_Segment_Tree(int n) : n(n) {
m = 1, height = 0;
while (m < n) m <<= 1, height++;
lazy.assign(2 * m, Operator::id);
}
inline void eval(int i) {
if (i < m) {
lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
lazy[i] = Operator::id;
}
}
inline void thrust(int i) {
for (int j = height; j > 0; j--) eval(i >> j);
}
void update(int l, int r, const O &x) {
l = max(l, 0), r = min(r, n);
if (l >= r) return;
l += m, r += m;
thrust(l), thrust(r - 1);
while (l < r) {
if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
l >>= 1, r >>= 1;
}
}
O get(int i) {
thrust(i + m);
return lazy[i + m];
}
O operator[](int i) { return get(i); }
};
struct Random_Number_Generator {
mt19937_64 mt;
Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}
// [l,r)
int64_t operator()(int64_t l, int64_t r) {
uniform_int_distribution<int64_t> dist(l, r - 1);
return dist(mt);
}
// [0,r)
int64_t operator()(int64_t r) { return (*this)(0, r); }
} rng;
long long modpow(long long x, long long n, const int &m) {
x %= m;
long long ret = 1;
for (; n > 0; n >>= 1, x *= x, x %= m) {
if (n & 1) ret *= x, ret %= m;
}
return ret;
}
template <typename T>
T modinv(T a, const T &m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
// ax ≡ b (mod M) x ()
// (, ) (-1, -1)
template <typename T>
pair<T, T> linear_equation(T a, T b, T m) {
a %= m, b %= m;
if (a < 0) a += m;
if (b < 0) b += m;
T g = gcd(a, m);
if (b % g != 0) return {-1, -1};
if (a == 0) return {0, 1};
a /= g, b /= g, m /= g;
return {b * modinv(a, m) % m, m};
}
// φ (x m x^φ(m) ≡ 1 (mod m))
template <typename T>
T Euler_totient(T m) {
T ret = m;
for (T i = 2; i * i <= m; i++) {
if (m % i == 0) ret /= i, ret *= i - 1;
while (m % i == 0) m /= i;
}
if (m > 1) ret /= m, ret *= m - 1;
return ret;
}
// x^k ≡ y (mod m) k ( -1)
int modlog(int x, int y, int m, int max_ans = -1) {
if (max_ans == -1) max_ans = m;
long long g = 1;
for (int i = m; i > 0; i >>= 1) g *= x, g %= m;
g = gcd(g, m);
int c = 0;
long long t = 1;
for (; t % g != 0; c++) {
if (t == y) return c;
t *= x, t %= m;
}
if (y % g != 0) return -1;
t /= g, y /= g, m /= g;
int n = 0;
long long gs = 1;
for (; n * n < max_ans; n++) gs *= x, gs %= m;
unordered_map<int, int> mp;
long long e = y;
for (int i = 0; i < n; mp[e] = ++i) e *= x, e %= m;
e = t;
for (int i = 0; i < n; i++) {
e *= gs, e %= m;
if (mp.count(e)) return c + n * (i + 1) - mp[e];
}
return -1;
}
// x^k ≡ 1 (mod m) k (x m )
template <typename T>
T order(T x, const T &m) {
T n = Euler_totient(m);
vector<T> ds;
for (T i = 1; i * i <= n; i++) {
if (n % i == 0) ds.push_back(i), ds.push_back(n / i);
}
sort(begin(ds), end(ds));
for (auto &e : ds) {
if (modpow(x, e, m) == 1) return e;
}
return -1;
}
// p
template <typename T>
T primitive_root(const T &p) {
vector<T> ds;
for (T i = 1; i * i <= p - 1; i++) {
if ((p - 1) % i == 0) ds.push_back(i), ds.push_back((p - 1) / i);
}
sort(begin(ds), end(ds));
while (true) {
T r = rng(1, p);
for (auto &e : ds) {
if (e == p - 1) return r;
if (modpow(r, e, p) == 1) break;
}
}
}
void solve() {
int N, M, Q;
cin >> N >> M >> Q;
Dual_Segment_Tree<Plus_Monoid<int>> seg(N);
auto get = [&](ll k) {
assert(k >= 1);
ll p = modpow(3, k - 1, M);
ll x = p * 3 % M;
ll y = p * 2 * k % M;
ll z = k * (k + 1) % M;
z *= p, z %= M;
ll X = (k + 1) % M;
ll Y = (x + y + z) % M;
ll Z = p * 3 % M;
cout << X MM Y MM Z << '\n';
};
while (Q--) {
int l, m, r;
cin >> l >> m >> r;
l--, m--;
seg.update(l, r, 1);
get(seg[m]);
}
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0