結果

問題 No.2395 区間二次変換一点取得
ユーザー siganaisiganai
提出日時 2023-07-28 21:54:18
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 131 ms / 2,000 ms
コード長 13,303 bytes
コンパイル時間 2,363 ms
コンパイル使用メモリ 213,456 KB
実行使用メモリ 11,128 KB
最終ジャッジ日時 2024-10-06 18:33:23
合計ジャッジ時間 4,937 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,824 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 3 ms
6,816 KB
testcase_12 AC 12 ms
6,820 KB
testcase_13 AC 131 ms
10,936 KB
testcase_14 AC 129 ms
10,992 KB
testcase_15 AC 130 ms
11,032 KB
testcase_16 AC 129 ms
10,924 KB
testcase_17 AC 129 ms
10,796 KB
testcase_18 AC 83 ms
11,128 KB
testcase_19 AC 83 ms
10,988 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test.cpp"
//#pragma GCC target("avx")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
    in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
    ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
//constexpr int mod = 1000000007;
constexpr int mod = 998244353;
#line 2 "library/modint/barrett-reduction.hpp"
struct Barrett {
    using u32 = unsigned int;
    using i64 = long long;
    using u64 = unsigned long long;
    u32 m;
    u64 im;
    Barrett() : m(), im() {}
    Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
    constexpr inline i64 quo(u64 n) {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        return m <= r ? x - 1 : x;
    }
    constexpr inline i64 rem(u64 n) {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        return m <= r ? r + m : r;
    }
    constexpr inline pair<i64, int> quorem(u64 n) {
        u64 x = u64((__uint128_t(n) * im) >> 64);
        u32 r = n - x * m;
        if (m <= r) return {x - 1, r + m};
        return {x, r};
    }
    constexpr inline i64 pow(u64 n, i64 p) {
        u32 a = rem(n), r = m == 1 ? 0 : 1;
        while (p) {
            if (p & 1) r = rem(u64(r) * a);
            a = rem(u64(a) * a);
            p >>= 1;
        }
        return r;
    }
};
#line 3 "library/modint/ArbitaryModint.hpp"
struct ArbitraryModint {
    int x;
    ArbitraryModint():x(0) {}
    ArbitraryModint(int64_t y) {
        int z = y % get_mod();
        if(z < 0) z += get_mod();
        x = z;
    }
    ArbitraryModint &operator+=(const ArbitraryModint &p) {
        if((x += p.x) >= get_mod()) x -= get_mod();
        return *this;
    }
    ArbitraryModint &operator-=(const ArbitraryModint &p) {
        if((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
        return *this;
    }
    ArbitraryModint &operator*=(const ArbitraryModint &p) {
        x = rem((unsigned long long)x * p.x);
        return *this;
    }
    ArbitraryModint &operator/=(const ArbitraryModint &p) {
        *this *= p.inverse();
        return *this;
    }
    ArbitraryModint operator-() const {return ArbitraryModint(-x);};
    ArbitraryModint operator+(const ArbitraryModint &p) const{
        return ArbitraryModint(*this) += p;
    }
    ArbitraryModint operator-(const ArbitraryModint &p) const{
        return ArbitraryModint(*this) -= p;
    }
    ArbitraryModint operator*(const ArbitraryModint &p) const{
        return ArbitraryModint(*this) *= p;
    }
    ArbitraryModint operator/(const ArbitraryModint &p) const {
        return ArbitraryModint(*this) /= p;
    }
    bool operator==(const ArbitraryModint &p) {return x == p.x;}
    bool operator!=(const ArbitraryModint &p) {return x != p.x;}
    ArbitraryModint inverse() const {
        int a = x,b = get_mod(),u = 1,v = 0,t;
        while(b > 0) {
            t = a / b;
            swap(a -= t * b,b);
            swap(u -= t * v,v);
        }
        return ArbitraryModint(u);
    }
    ArbitraryModint pow(int64_t n) const {
        ArbitraryModint ret(1),mul(x);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }
    friend ostream &operator<<(ostream &os,const ArbitraryModint &p) {
        return os << p.x;
    }
    friend istream &operator>>(istream &is,ArbitraryModint &a) {
        int64_t t;
        is >> t;
        a = ArbitraryModint(t);
        return (is);
    }
    int get() const {return x;}
    inline unsigned int rem(unsigned long long p) {return barrett().rem(p);};
    static inline Barrett &barrett() {
        static Barrett b;
        return b;
    }
    static inline int &get_mod() {
        static int mod = 0;
        return mod;
    }
    static void set_mod(int md) {
        assert(0 < md && md <= (1LL << 30) - 1);
        get_mod() = md;
        barrett() = Barrett(md);
    }
};
#line 86 "test.cpp"
using mint = ArbitraryModint;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/segtree/lazysegtree.hpp"
template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {}
    explicit lazy_segtree(const vector<S>& v) : _n(int(v.size())) {
        log = 0;
        while ((1U << log) < (unsigned int)(_n)) log++;
        size = 1 << log;
        d = vector<S>(2 * size, e());
        lz = vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};
#line 91 "test.cpp"

struct S {
    ll val;int size;
};

S op(S x,S y) {return S{x.val + y.val,x.size + y.size};}
S e() {return S{0,1};}
S mapping(ll f,S x) { return S{f*x.size+x.val,x.size};}
ll composition (ll L,ll R) {return R + L;}
ll id() {return 0;}


int main() {
    INT(n,b,q);
    mint::set_mod(b);
    vm x(q + 1),y(q + 1),z(q + 1);
    x[0] = y[0] = z[0] = 1;
    rep(i,1,q+1) {
        x[i] = x[i-1] + 1;
        y[i] = y[i-1] * 3 + x[i] * z[i-1] * 2;
        z[i] = z[i-1] * 3;
    }
    lazy_segtree<S,op,e,ll,mapping,composition,id> seg(n);
    rep(i,q) {
        INT(l,m,r);
        seg.apply(l-1,r,1);
        int now = seg.get(m-1).val;
        cout << x[now] << " " << y[now] << " " << z[now] << '\n';
    } 
}
0