結果

問題 No.2395 区間二次変換一点取得
ユーザー Focus_SashFocus_Sash
提出日時 2023-07-28 22:10:01
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,331 ms / 2,000 ms
コード長 6,719 bytes
コンパイル時間 2,590 ms
コンパイル使用メモリ 223,288 KB
実行使用メモリ 7,040 KB
最終ジャッジ日時 2024-10-06 19:05:53
合計ジャッジ時間 13,205 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 10 ms
6,820 KB
testcase_12 AC 106 ms
6,820 KB
testcase_13 AC 1,300 ms
6,912 KB
testcase_14 AC 1,296 ms
6,912 KB
testcase_15 AC 1,249 ms
7,040 KB
testcase_16 AC 1,278 ms
6,912 KB
testcase_17 AC 1,261 ms
6,912 KB
testcase_18 AC 1,331 ms
6,912 KB
testcase_19 AC 1,316 ms
6,912 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
using namespace std;

namespace util {
using ll = long long;
using vl = std::vector<long long>;
using pl = std::pair<long long, long long>;

constexpr long long kInf = std::numeric_limits<long long>::max() / 8;
constexpr long long kMax = std::numeric_limits<long long>::max();

template <typename T, typename U>
inline bool UpdateMax(T &x, const U &y) {
  if (x < y) {
    x = y;
    return true;
  }
  return false;
}

template <typename T, typename U>
inline bool UpdateMin(T &x, const U &y) {
  if (x > y) {
    x = y;
    return true;
  }
  return false;
}

// verified
inline long long Pow(long long x, long long n) {
  assert(n >= 0);
  if (x == 0) return 0;
  long long res = 1LL;
  while (n > 0) {
    if (n & 1) {
      assert(x != 0 && std::abs(res) <= kMax / std::abs(x));
      res = res * x;
    }
    if (n >>= 1) {
      assert(x != 0 && std::abs(x) <= kMax / std::abs(x));
      x = x * x;
    }
  }
  return res;
}

// verified
inline long long Mod(long long n, const long long m) {
  // returns the "arithmetic modulo"
  // for a pair of integers (n, m) with m != 0, there exists a unique pair of
  // integer (q, r) s.t. n = qm + r and 0 <= r < |m| returns this r
  assert(m != 0);
  if (m < 0) return Mod(n, -m);
  if (n >= 0)
    return n % m;
  else
    return (m + n % m) % m;
}

inline long long Quotient(long long n, long long m) {
  // returns the "arithmetic quotient"
  assert((n - Mod(n, m)) % m == 0);
  return (n - Mod(n, m)) / m;
}

inline long long DivFloor(long long n, long long m) {
  // returns floor(n / m)
  assert(m != 0);
  if (m < 0) {
    n = -n;
    m = -m;
  }
  if (n >= 0)
    return n / m;
  else if (n % m == 0)
    return -(abs(n) / m);
  else
    return -(abs(n) / m) - 1;
}

inline long long DivCeil(long long n, long long m) {
  // returns ceil(n / m)
  assert(m != 0);
  if (n % m == 0)
    return DivFloor(n, m);
  else
    return DivFloor(n, m) + 1;
}

template <typename T>
inline T Sum(const std::vector<T> &vec) {
  return std::accumulate(vec.begin(), vec.end(), T(0));
}
}  // namespace util
using namespace util;

inline long long PowMod(long long x, long long n, const long long m) {
  assert(n >= 0);
  assert(m != 0);
  if (x == 0) return 0;
  long long res = 1;
  x = Mod(x, m);
  while (n > 0) {
    if (n & 1) {
      assert(x == 0 || std::abs(res) <= kMax / std::abs(x));
      res = Mod(res * x, m);
    }
    if (n >>= 1) {
      assert(x == 0 || std::abs(x) <= kMax / std::abs(x));
      x = Mod(x * x, m);
    }
  }
  return res;
}

#include <cassert>
#include <vector>

template <typename T>
class Matrix {
 private:
  int row_, col_;

 public:
  std::vector<std::vector<T>> m_;

  Matrix(int row, int col) : row_(row), col_(col), m_() {}

  Matrix(int row, int col, T x)
      : row_(row), col_(col), m_(row, std::vector<T>(col)) {
    for (int i = 0; i < row_; i++) {
      for (int j = 0; j < col_; j++) m_[i][j] = x;
    }
  }

  Matrix(std::vector<std::vector<T>> &m)
      : row_((int)m.size()), col_((int)m[0].size()), m_(m) {}

  Matrix(std::initializer_list<std::vector<T>> init) : m_(init) {
    row_ = (int)m_.size();
    col_ = (int)m_[0].size();
  }

  bool operator==(const Matrix &x) {
    if (row_ != x.n || col_ != x.m) return false;
    for (int i = 0; i < row_; i++) {
      for (int j = 0; j < col_; j++) {
        if (m_[i][j] != x[i][j]) return false;
      }
    }
    return true;
  }

  Matrix &operator=(const Matrix &x) = default;

  Matrix operator+(const Matrix &x) {
    assert(row_ == x.row_ && col_ == x.col_);
    Matrix res(m_);
    for (int i = 0; i < row_; i++) {
      for (int j = 0; j < col_; j++) {
        res.m_[i][j] += x.m_[i][j];
      }
    }
    return res;
  }

  Matrix operator-(const Matrix &x) {
    assert(row_ == x.row_ && col_ == x.col_);
    Matrix res(m_);
    for (int i = 0; i < row_; i++) {
      for (int j = 0; j < col_; j++) {
        res.m_[i][j] -= x.m_[i][j];
      }
    }
    return res;
  }

  Matrix operator*(const Matrix &x) {
    assert(col_ == x.row_);
    Matrix res(row_, x.col_, T());
    for (int i = 0; i < row_; i++) {
      for (int k = 0; k < col_; k++) {
        for (int j = 0; j < x.col_; j++) {
          res.m_[i][j] += m_[i][k] * x.m_[k][j];
        }
      }
    }
    return res;
  }

  std::vector<T> operator*(const std::vector<T> &v) {
    assert(col_ == (int)v.size());
    std::vector<T> res(row_, 0);
    for (int i = 0; i < row_; i++) {
      for (int j = 0; j < col_; j++) {
        res[i] += m_[i][j] * v[j];
      }
    }
    return res;
  }

  Matrix &operator+=(const Matrix &x) {
    *this = *this + x;
    return *this;
  }

  Matrix &operator-=(const Matrix &x) {
    *this = *this - x;
    return *this;
  }

  Matrix &operator*=(const Matrix &x) {
    *this = *this * x;
    return *this;
  }

  T &operator()(long long i, long long j) { return m_[i][j]; }

  std::vector<T> &operator[](long long i) { return m_[i]; }

  Matrix pow(long long k) {
    assert(k >= 0);
    assert(row_ == col_);
    std::vector<std::vector<T>> x(row_, std::vector<T>(row_));
    for (int i = 0; i < row_; i++) x[i][i] = 1;
    Matrix res(x), tmp = *this;
    while (k) {
      if (k & 1) res *= tmp;
      k >>= 1;
      tmp *= tmp;
    }
    return res;
  }

  Matrix transpose() {
    Matrix<T> ret(col_, row_, 0);
    for (int i = 0; i < col_; i++) {
      for (int j = 0; j < row_; j++) {
        ret[i][j] = (*this)[j][i];
      }
    }
    return ret;
  }
};

template <typename T>
Matrix<T> DiagonalMatrix(const int n, const T d) {
  Matrix<T> res(n, n);
  for (int i = 0; i < n; i++) res.m_[i][i] = d;
  return res;
}

template <typename T>
Matrix<T> IdentityMatrix(const int n) {
  return diag(n, T(1));
}

#include <atcoder/lazysegtree>
using namespace atcoder;

ll op(ll x, ll y) { return x + y; }
ll e() { return 0; }
ll mapping(ll f, ll x) { return f + x; }
ll composition(ll f, ll g) { return f + g; }
ll id() { return 0; }

#include <atcoder/modint>

void solve() {
  ll n, b, q;
  cin >> n >> b >> q;
  lazy_segtree<ll, op, e, ll, mapping, composition, id> seg(n);
  vector<modint> init = {1, 1, 1, 1, 1};
  modint::set_mod(b);
  Matrix<modint> M = {{1, 0, 0, 0, 1},
                      {0, 3, 2, 2, 0},
                      {0, 0, 3, 0, 0},
                      {0, 0, 3, 3, 0},
                      {0, 0, 0, 0, 1}};
  while (q--) {
    ll l, m, r;
    cin >> l >> m >> r;
    l--;
    m--;
    r--;
    seg.apply(l, r + 1, 1);
    vector<modint> v = M.pow(seg.get(m)) * init;
    cout << v[0].val() << " " << v[1].val() << " " << v[2].val() << '\n';
  }
}

int main() {
  std::cin.tie(nullptr);
  std::ios::sync_with_stdio(false);
  std::cout << std::fixed << std::setprecision(15);

  solve();

  return 0;
}
0