結果
問題 | No.2395 区間二次変換一点取得 |
ユーザー |
![]() |
提出日時 | 2023-07-28 22:10:01 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,347 ms / 2,000 ms |
コード長 | 6,719 bytes |
コンパイル時間 | 2,044 ms |
コンパイル使用メモリ | 214,332 KB |
最終ジャッジ日時 | 2025-02-15 20:30:00 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 20 |
ソースコード
#include "bits/stdc++.h"using namespace std;namespace util {using ll = long long;using vl = std::vector<long long>;using pl = std::pair<long long, long long>;constexpr long long kInf = std::numeric_limits<long long>::max() / 8;constexpr long long kMax = std::numeric_limits<long long>::max();template <typename T, typename U>inline bool UpdateMax(T &x, const U &y) {if (x < y) {x = y;return true;}return false;}template <typename T, typename U>inline bool UpdateMin(T &x, const U &y) {if (x > y) {x = y;return true;}return false;}// verifiedinline long long Pow(long long x, long long n) {assert(n >= 0);if (x == 0) return 0;long long res = 1LL;while (n > 0) {if (n & 1) {assert(x != 0 && std::abs(res) <= kMax / std::abs(x));res = res * x;}if (n >>= 1) {assert(x != 0 && std::abs(x) <= kMax / std::abs(x));x = x * x;}}return res;}// verifiedinline long long Mod(long long n, const long long m) {// returns the "arithmetic modulo"// for a pair of integers (n, m) with m != 0, there exists a unique pair of// integer (q, r) s.t. n = qm + r and 0 <= r < |m| returns this rassert(m != 0);if (m < 0) return Mod(n, -m);if (n >= 0)return n % m;elsereturn (m + n % m) % m;}inline long long Quotient(long long n, long long m) {// returns the "arithmetic quotient"assert((n - Mod(n, m)) % m == 0);return (n - Mod(n, m)) / m;}inline long long DivFloor(long long n, long long m) {// returns floor(n / m)assert(m != 0);if (m < 0) {n = -n;m = -m;}if (n >= 0)return n / m;else if (n % m == 0)return -(abs(n) / m);elsereturn -(abs(n) / m) - 1;}inline long long DivCeil(long long n, long long m) {// returns ceil(n / m)assert(m != 0);if (n % m == 0)return DivFloor(n, m);elsereturn DivFloor(n, m) + 1;}template <typename T>inline T Sum(const std::vector<T> &vec) {return std::accumulate(vec.begin(), vec.end(), T(0));}} // namespace utilusing namespace util;inline long long PowMod(long long x, long long n, const long long m) {assert(n >= 0);assert(m != 0);if (x == 0) return 0;long long res = 1;x = Mod(x, m);while (n > 0) {if (n & 1) {assert(x == 0 || std::abs(res) <= kMax / std::abs(x));res = Mod(res * x, m);}if (n >>= 1) {assert(x == 0 || std::abs(x) <= kMax / std::abs(x));x = Mod(x * x, m);}}return res;}#include <cassert>#include <vector>template <typename T>class Matrix {private:int row_, col_;public:std::vector<std::vector<T>> m_;Matrix(int row, int col) : row_(row), col_(col), m_() {}Matrix(int row, int col, T x): row_(row), col_(col), m_(row, std::vector<T>(col)) {for (int i = 0; i < row_; i++) {for (int j = 0; j < col_; j++) m_[i][j] = x;}}Matrix(std::vector<std::vector<T>> &m): row_((int)m.size()), col_((int)m[0].size()), m_(m) {}Matrix(std::initializer_list<std::vector<T>> init) : m_(init) {row_ = (int)m_.size();col_ = (int)m_[0].size();}bool operator==(const Matrix &x) {if (row_ != x.n || col_ != x.m) return false;for (int i = 0; i < row_; i++) {for (int j = 0; j < col_; j++) {if (m_[i][j] != x[i][j]) return false;}}return true;}Matrix &operator=(const Matrix &x) = default;Matrix operator+(const Matrix &x) {assert(row_ == x.row_ && col_ == x.col_);Matrix res(m_);for (int i = 0; i < row_; i++) {for (int j = 0; j < col_; j++) {res.m_[i][j] += x.m_[i][j];}}return res;}Matrix operator-(const Matrix &x) {assert(row_ == x.row_ && col_ == x.col_);Matrix res(m_);for (int i = 0; i < row_; i++) {for (int j = 0; j < col_; j++) {res.m_[i][j] -= x.m_[i][j];}}return res;}Matrix operator*(const Matrix &x) {assert(col_ == x.row_);Matrix res(row_, x.col_, T());for (int i = 0; i < row_; i++) {for (int k = 0; k < col_; k++) {for (int j = 0; j < x.col_; j++) {res.m_[i][j] += m_[i][k] * x.m_[k][j];}}}return res;}std::vector<T> operator*(const std::vector<T> &v) {assert(col_ == (int)v.size());std::vector<T> res(row_, 0);for (int i = 0; i < row_; i++) {for (int j = 0; j < col_; j++) {res[i] += m_[i][j] * v[j];}}return res;}Matrix &operator+=(const Matrix &x) {*this = *this + x;return *this;}Matrix &operator-=(const Matrix &x) {*this = *this - x;return *this;}Matrix &operator*=(const Matrix &x) {*this = *this * x;return *this;}T &operator()(long long i, long long j) { return m_[i][j]; }std::vector<T> &operator[](long long i) { return m_[i]; }Matrix pow(long long k) {assert(k >= 0);assert(row_ == col_);std::vector<std::vector<T>> x(row_, std::vector<T>(row_));for (int i = 0; i < row_; i++) x[i][i] = 1;Matrix res(x), tmp = *this;while (k) {if (k & 1) res *= tmp;k >>= 1;tmp *= tmp;}return res;}Matrix transpose() {Matrix<T> ret(col_, row_, 0);for (int i = 0; i < col_; i++) {for (int j = 0; j < row_; j++) {ret[i][j] = (*this)[j][i];}}return ret;}};template <typename T>Matrix<T> DiagonalMatrix(const int n, const T d) {Matrix<T> res(n, n);for (int i = 0; i < n; i++) res.m_[i][i] = d;return res;}template <typename T>Matrix<T> IdentityMatrix(const int n) {return diag(n, T(1));}#include <atcoder/lazysegtree>using namespace atcoder;ll op(ll x, ll y) { return x + y; }ll e() { return 0; }ll mapping(ll f, ll x) { return f + x; }ll composition(ll f, ll g) { return f + g; }ll id() { return 0; }#include <atcoder/modint>void solve() {ll n, b, q;cin >> n >> b >> q;lazy_segtree<ll, op, e, ll, mapping, composition, id> seg(n);vector<modint> init = {1, 1, 1, 1, 1};modint::set_mod(b);Matrix<modint> M = {{1, 0, 0, 0, 1},{0, 3, 2, 2, 0},{0, 0, 3, 0, 0},{0, 0, 3, 3, 0},{0, 0, 0, 0, 1}};while (q--) {ll l, m, r;cin >> l >> m >> r;l--;m--;r--;seg.apply(l, r + 1, 1);vector<modint> v = M.pow(seg.get(m)) * init;cout << v[0].val() << " " << v[1].val() << " " << v[2].val() << '\n';}}int main() {std::cin.tie(nullptr);std::ios::sync_with_stdio(false);std::cout << std::fixed << std::setprecision(15);solve();return 0;}