結果

問題 No.2395 区間二次変換一点取得
ユーザー Focus_SashFocus_Sash
提出日時 2023-07-28 22:10:01
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,347 ms / 2,000 ms
コード長 6,719 bytes
コンパイル時間 2,044 ms
コンパイル使用メモリ 214,332 KB
最終ジャッジ日時 2025-02-15 20:30:00
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include "bits/stdc++.h"
using namespace std;
namespace util {
using ll = long long;
using vl = std::vector<long long>;
using pl = std::pair<long long, long long>;
constexpr long long kInf = std::numeric_limits<long long>::max() / 8;
constexpr long long kMax = std::numeric_limits<long long>::max();
template <typename T, typename U>
inline bool UpdateMax(T &x, const U &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
template <typename T, typename U>
inline bool UpdateMin(T &x, const U &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
// verified
inline long long Pow(long long x, long long n) {
assert(n >= 0);
if (x == 0) return 0;
long long res = 1LL;
while (n > 0) {
if (n & 1) {
assert(x != 0 && std::abs(res) <= kMax / std::abs(x));
res = res * x;
}
if (n >>= 1) {
assert(x != 0 && std::abs(x) <= kMax / std::abs(x));
x = x * x;
}
}
return res;
}
// verified
inline long long Mod(long long n, const long long m) {
// returns the "arithmetic modulo"
// for a pair of integers (n, m) with m != 0, there exists a unique pair of
// integer (q, r) s.t. n = qm + r and 0 <= r < |m| returns this r
assert(m != 0);
if (m < 0) return Mod(n, -m);
if (n >= 0)
return n % m;
else
return (m + n % m) % m;
}
inline long long Quotient(long long n, long long m) {
// returns the "arithmetic quotient"
assert((n - Mod(n, m)) % m == 0);
return (n - Mod(n, m)) / m;
}
inline long long DivFloor(long long n, long long m) {
// returns floor(n / m)
assert(m != 0);
if (m < 0) {
n = -n;
m = -m;
}
if (n >= 0)
return n / m;
else if (n % m == 0)
return -(abs(n) / m);
else
return -(abs(n) / m) - 1;
}
inline long long DivCeil(long long n, long long m) {
// returns ceil(n / m)
assert(m != 0);
if (n % m == 0)
return DivFloor(n, m);
else
return DivFloor(n, m) + 1;
}
template <typename T>
inline T Sum(const std::vector<T> &vec) {
return std::accumulate(vec.begin(), vec.end(), T(0));
}
} // namespace util
using namespace util;
inline long long PowMod(long long x, long long n, const long long m) {
assert(n >= 0);
assert(m != 0);
if (x == 0) return 0;
long long res = 1;
x = Mod(x, m);
while (n > 0) {
if (n & 1) {
assert(x == 0 || std::abs(res) <= kMax / std::abs(x));
res = Mod(res * x, m);
}
if (n >>= 1) {
assert(x == 0 || std::abs(x) <= kMax / std::abs(x));
x = Mod(x * x, m);
}
}
return res;
}
#include <cassert>
#include <vector>
template <typename T>
class Matrix {
private:
int row_, col_;
public:
std::vector<std::vector<T>> m_;
Matrix(int row, int col) : row_(row), col_(col), m_() {}
Matrix(int row, int col, T x)
: row_(row), col_(col), m_(row, std::vector<T>(col)) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < col_; j++) m_[i][j] = x;
}
}
Matrix(std::vector<std::vector<T>> &m)
: row_((int)m.size()), col_((int)m[0].size()), m_(m) {}
Matrix(std::initializer_list<std::vector<T>> init) : m_(init) {
row_ = (int)m_.size();
col_ = (int)m_[0].size();
}
bool operator==(const Matrix &x) {
if (row_ != x.n || col_ != x.m) return false;
for (int i = 0; i < row_; i++) {
for (int j = 0; j < col_; j++) {
if (m_[i][j] != x[i][j]) return false;
}
}
return true;
}
Matrix &operator=(const Matrix &x) = default;
Matrix operator+(const Matrix &x) {
assert(row_ == x.row_ && col_ == x.col_);
Matrix res(m_);
for (int i = 0; i < row_; i++) {
for (int j = 0; j < col_; j++) {
res.m_[i][j] += x.m_[i][j];
}
}
return res;
}
Matrix operator-(const Matrix &x) {
assert(row_ == x.row_ && col_ == x.col_);
Matrix res(m_);
for (int i = 0; i < row_; i++) {
for (int j = 0; j < col_; j++) {
res.m_[i][j] -= x.m_[i][j];
}
}
return res;
}
Matrix operator*(const Matrix &x) {
assert(col_ == x.row_);
Matrix res(row_, x.col_, T());
for (int i = 0; i < row_; i++) {
for (int k = 0; k < col_; k++) {
for (int j = 0; j < x.col_; j++) {
res.m_[i][j] += m_[i][k] * x.m_[k][j];
}
}
}
return res;
}
std::vector<T> operator*(const std::vector<T> &v) {
assert(col_ == (int)v.size());
std::vector<T> res(row_, 0);
for (int i = 0; i < row_; i++) {
for (int j = 0; j < col_; j++) {
res[i] += m_[i][j] * v[j];
}
}
return res;
}
Matrix &operator+=(const Matrix &x) {
*this = *this + x;
return *this;
}
Matrix &operator-=(const Matrix &x) {
*this = *this - x;
return *this;
}
Matrix &operator*=(const Matrix &x) {
*this = *this * x;
return *this;
}
T &operator()(long long i, long long j) { return m_[i][j]; }
std::vector<T> &operator[](long long i) { return m_[i]; }
Matrix pow(long long k) {
assert(k >= 0);
assert(row_ == col_);
std::vector<std::vector<T>> x(row_, std::vector<T>(row_));
for (int i = 0; i < row_; i++) x[i][i] = 1;
Matrix res(x), tmp = *this;
while (k) {
if (k & 1) res *= tmp;
k >>= 1;
tmp *= tmp;
}
return res;
}
Matrix transpose() {
Matrix<T> ret(col_, row_, 0);
for (int i = 0; i < col_; i++) {
for (int j = 0; j < row_; j++) {
ret[i][j] = (*this)[j][i];
}
}
return ret;
}
};
template <typename T>
Matrix<T> DiagonalMatrix(const int n, const T d) {
Matrix<T> res(n, n);
for (int i = 0; i < n; i++) res.m_[i][i] = d;
return res;
}
template <typename T>
Matrix<T> IdentityMatrix(const int n) {
return diag(n, T(1));
}
#include <atcoder/lazysegtree>
using namespace atcoder;
ll op(ll x, ll y) { return x + y; }
ll e() { return 0; }
ll mapping(ll f, ll x) { return f + x; }
ll composition(ll f, ll g) { return f + g; }
ll id() { return 0; }
#include <atcoder/modint>
void solve() {
ll n, b, q;
cin >> n >> b >> q;
lazy_segtree<ll, op, e, ll, mapping, composition, id> seg(n);
vector<modint> init = {1, 1, 1, 1, 1};
modint::set_mod(b);
Matrix<modint> M = {{1, 0, 0, 0, 1},
{0, 3, 2, 2, 0},
{0, 0, 3, 0, 0},
{0, 0, 3, 3, 0},
{0, 0, 0, 0, 1}};
while (q--) {
ll l, m, r;
cin >> l >> m >> r;
l--;
m--;
r--;
seg.apply(l, r + 1, 1);
vector<modint> v = M.pow(seg.get(m)) * init;
cout << v[0].val() << " " << v[1].val() << " " << v[2].val() << '\n';
}
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(15);
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0