結果

問題 No.2395 区間二次変換一点取得
ユーザー hotman78hotman78
提出日時 2023-07-28 22:16:37
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 66 ms / 2,000 ms
コード長 23,433 bytes
コンパイル時間 13,020 ms
コンパイル使用メモリ 300,896 KB
最終ジャッジ日時 2025-02-15 20:32:42
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// author: hotman78
// date: 2023/07/28-22:16:29
// --- begin raw code -----------------
// #include"cpplib/util/template.hpp"
// #include"cpplib/math/ACL_modint.hpp"
// #include"cpplib/data_structure/binary_indexed_tree.hpp"
// int main(){
// lint n,b,q;
// cin>>n>>b>>q;
// mint::set_mod(b);
// vector<tuple<mint,mint,mint>>ans={{1,1,1}};
// rep(i,q){
// auto [a,b,c]=ans.back();
// ans.emplace_back(a+1,3*b+2*(a+1)*c,c*3);
// }
// BIT<lint>tb(n);
// while(q--){
// lint l,m,r;
// cin>>l>>m>>r;
// l--;
// tb.add(l,1);
// tb.add(r,-1);
// int k=tb.sum(0,m);
// auto [a,b,c]=ans[k];
// cout<<a<<" "<<b<<" "<<c<<endl;
// }
// }
// --- end raw code -----------------
#line 2 "cpplib/util/template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#include <bits/stdc++.h>
using namespace std;
#line 1 "cpplib/util/ioutil.hpp"
// template <class Head,class... Args>
// std::ostream& output(std::ostream& out,const Head& head,const Args&... args){
// out>>head;
// return output(head,args...);
// }
// template <class Head>
// std::ostream& output(std::ostream& out,const Head& head){
// out>>head;
// return out;
// }
template <typename T, typename E>
std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) {
out << "(" << v.first << "," << v.second << ")";
return out;
}
// template <class... Args>
// ostream& operator<<(ostream& out,std::tuple<Args...>v){
// std::apply(output,v);
// return out;
// }
#line 8 "cpplib/util/template.hpp"
struct __INIT__ {
__INIT__() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __INIT__;
typedef long long lint;
constexpr long long INF = 1LL << 60;
constexpr int IINF = 1 << 30;
constexpr double EPS = 1e-10;
#ifndef REACTIVE
#define endl '\n';
#endif
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template <typename T> using V = vector<T>;
template <typename T> using VV = V<V<T>>;
template <typename T> inline void output(T t) {
bool f = 0;
for (auto i : t) {
cout << (f ? " " : "") << i;
f = 1;
}
cout << endl;
}
template <typename T> inline void output2(T t) {
for (auto i : t)
output(i);
}
template <typename T> inline void debug(T t) {
bool f = 0;
for (auto i : t) {
cerr << (f ? " " : "") << i;
f = 1;
}
cerr << endl;
}
template <typename T> inline void debug2(T t) {
for (auto i : t)
debug(i);
}
#define loop(n) for (long long _ = 0; _ < (long long)(n); ++_)
#define _overload4(_1, _2, _3, _4, name, ...) name
#define __rep(i, a) repi(i, 0, a, 1)
#define _rep(i, a, b) repi(i, a, b, 1)
#define repi(i, a, b, c) \
for (long long i = (long long)(a); i < (long long)(b); i += c)
#define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__)
#define _overload3_rev(_1, _2, _3, name, ...) name
#define _rep_rev(i, a) repi_rev(i, 0, a)
#define repi_rev(i, a, b) \
for (long long i = (long long)(b)-1; i >= (long long)(a); --i)
#define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__)
#define all(n) begin(n), end(n)
template <typename T, typename E> bool chmin(T &s, const E &t) {
bool res = s > t;
s = min<T>(s, t);
return res;
}
template <typename T, typename E> bool chmax(T &s, const E &t) {
bool res = s < t;
s = max<T>(s, t);
return res;
}
const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1};
const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1};
#define SUM(v) accumulate(all(v), 0LL)
#if __cplusplus >= 201703L
template <typename T, typename... Args>
auto make_vector(T x, int arg, Args... args) {
if constexpr (sizeof...(args) == 0)
return vector<T>(arg, x);
else
return vector(arg, make_vector<T>(x, args...));
}
#endif
#define extrep(v, ...) for (auto v : __MAKE_MAT__({__VA_ARGS__}))
#define bit(n, a) ((n >> a) & 1)
vector<vector<long long>> __MAKE_MAT__(vector<long long> v) {
if (v.empty())
return vector<vector<long long>>(1, vector<long long>());
long long n = v.back();
v.pop_back();
vector<vector<long long>> ret;
vector<vector<long long>> tmp = __MAKE_MAT__(v);
for (auto e : tmp)
for (long long i = 0; i < n; ++i) {
ret.push_back(e);
ret.back().push_back(i);
}
return ret;
}
using graph = vector<vector<int>>;
template <typename T> using graph_w = vector<vector<pair<int, T>>>;
#if __cplusplus >= 201703L
constexpr inline long long powll(long long a, long long b) {
long long res = 1;
while (b--)
res *= a;
return res;
}
#endif
template <typename T, typename E>
pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) {
s.first += t.first;
s.second += t.second;
return s;
}
template <typename T, typename E>
pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) {
s.first -= t.first;
s.second -= t.second;
return s;
}
template <typename T, typename E>
pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) {
auto res = s;
return res += t;
}
template <typename T, typename E>
pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) {
auto res = s;
return res -= t;
}
#define BEGIN_STACK_EXTEND(size) \
void *stack_extend_memory_ = malloc(size); \
void *stack_extend_origin_memory_; \
char *stack_extend_dummy_memory_ = (char *)alloca( \
(1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \
*stack_extend_dummy_memory_ = 0; \
asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \
: "=b"(stack_extend_origin_memory_) \
: "a"((char *)stack_extend_memory_ + (size)-1024));
#define END_STACK_EXTEND \
asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \
free(stack_extend_memory_);
#line 2 "cpplib/math/ACL_modint.hpp"
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0)
x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v)
v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1)
return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1)
r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1)
return false;
if (n == 2 || n == 7 || n == 61)
return true;
if (n % 2 == 0)
return false;
long long d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0)
return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0)
m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2)
return 1;
if (m == 167772161)
return 3;
if (m == 469762049)
return 3;
if (m == 754974721)
return 11;
if (m == 998244353)
return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok)
return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m)
break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0)
x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint &operator--() {
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0)
x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint &operator--() {
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v += mod() - rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator*=(const mint &rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint = atcoder::modint;
#line 4 "cpplib/math/ACL_modint_base.hpp"
std::ostream &operator<<(std::ostream &lhs, const mint &rhs) noexcept {
lhs << rhs.val();
return lhs;
}
std::istream &operator>>(std::istream &lhs, mint &rhs) noexcept {
long long x;
lhs >> x;
rhs = x;
return lhs;
}
int MOD_NOW = -1;
int sz = 0;
std::vector<mint> fact_table, fact_inv_table;
void update(int x) {
if (MOD_NOW != mint::mod() || sz == 0) {
fact_table.assign(1, 1);
fact_inv_table.assign(1, 1);
sz = 1;
MOD_NOW = mint::mod();
}
while (sz <= x) {
fact_table.resize(sz * 2);
fact_inv_table.resize(sz * 2);
for (int i = sz; i < sz * 2; ++i) {
fact_table[i] = fact_table[i - 1] * i;
}
fact_inv_table[sz * 2 - 1] = fact_table[sz * 2 - 1].inv();
for (int i = sz * 2 - 2; i >= sz; --i) {
fact_inv_table[i] = fact_inv_table[i + 1] * (i + 1);
}
sz *= 2;
}
}
inline mint fact(int x) {
assert(x >= 0);
update(x);
return fact_table[x];
}
inline mint fact_inv(int x) {
assert(x >= 0);
update(x);
return fact_inv_table[x];
}
inline mint comb(int x, int y) {
if (x < 0 || x < y || y < 0)
return 0;
return fact(x) * fact_inv(y) * fact_inv(x - y);
}
inline mint perm(int x, int y) { return fact(x) * fact_inv(x - y); }
inline mint multi_comb(int x, int y) { return comb(x + y - 1, y); }
#line 4 "cpplib/data_structure/binary_indexed_tree.hpp"
/**
* @brief BinaryIndexedTree
*/
template <typename T = long long, typename F = std::plus<T>,
typename Inv = std::minus<T>>
struct BIT {
std::vector<T> bit;
int n;
F f;
Inv inv;
BIT(int n, T zero = T(), F f = F(), Inv inv = Inv())
: n(n), f(f), inv(inv) {
bit.resize(n + 1, zero);
}
// 0-indexed [0,x)-sum
T sum(T x) {
T res = 0;
for (int i = x; i; i -= i & -i)
res = f(res, bit[i]);
return res;
}
// 0-indexed [x,y)-sum
T sum(int x, int y) { return inv(sum(y), sum(x)); }
// 0-indexed
void add(int x, T val) {
if (x >= n)
return;
for (int i = x + 1; i <= n; i += i & -i)
bit[i] = f(bit[i], val);
}
};
#line 4 "main.cpp"
int main() {
lint n, b, q;
cin >> n >> b >> q;
mint::set_mod(b);
vector<tuple<mint, mint, mint>> ans = {{1, 1, 1}};
rep(i, q) {
auto [a, b, c] = ans.back();
ans.emplace_back(a + 1, 3 * b + 2 * (a + 1) * c, c * 3);
}
BIT<lint> tb(n);
while (q--) {
lint l, m, r;
cin >> l >> m >> r;
l--;
tb.add(l, 1);
tb.add(r, -1);
int k = tb.sum(0, m);
auto [a, b, c] = ans[k];
cout << a << " " << b << " " << c << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0