結果

問題 No.1302 Random Tree Score
ユーザー ebi_flyebi_fly
提出日時 2023-07-28 23:32:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 880 ms / 3,000 ms
コード長 20,596 bytes
コンパイル時間 2,010 ms
コンパイル使用メモリ 161,172 KB
実行使用メモリ 11,300 KB
最終ジャッジ日時 2024-10-06 21:52:31
合計ジャッジ時間 10,428 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 185 ms
5,248 KB
testcase_03 AC 393 ms
7,640 KB
testcase_04 AC 190 ms
5,248 KB
testcase_05 AC 861 ms
11,104 KB
testcase_06 AC 874 ms
11,132 KB
testcase_07 AC 194 ms
5,340 KB
testcase_08 AC 400 ms
7,776 KB
testcase_09 AC 869 ms
11,164 KB
testcase_10 AC 861 ms
10,340 KB
testcase_11 AC 188 ms
5,248 KB
testcase_12 AC 880 ms
10,724 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 865 ms
11,300 KB
testcase_15 AC 847 ms
11,172 KB
testcase_16 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "a.cpp"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <climits>
#include <cmath>
#include <complex>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

/* macro */

#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()

/* macro end */

/* template */

namespace ebi {

#ifdef LOCAL
#define debug(...)                                                      \
    std::cerr << "LINE: " << __LINE__ << "  [" << #__VA_ARGS__ << "]:", \
        debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif

void debug_out() {
    std::cerr << std::endl;
}

template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
    std::cerr << " " << h;
    if (sizeof...(t) > 0) std::cerr << " :";
    debug_out(t...);
}

template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
    return os << pa.first << " " << pa.second;
}

template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
    return os >> pa.first >> pa.second;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
    for (std::size_t i = 0; i < vec.size(); i++)
        os << vec[i] << (i + 1 == vec.size() ? "" : " ");
    return os;
}

template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
    for (T &e : vec) std::cin >> e;
    return os;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
    if (opt) {
        os << opt.value();
    } else {
        os << "invalid value";
    }
    return os;
}

using std::size_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;

template <class T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> T pow(T x, i64 n) {
    T res = 1;
    while (n > 0) {
        if (n & 1) res = res * x;
        x = x * x;
        n >>= 1;
    }
    return res;
}

template <class T> struct Edge {
    int to;
    T cost;
    Edge(int _to, T _cost = 1) : to(_to), cost(_cost) {}
};

template <class T> struct Graph : std::vector<std::vector<Edge<T>>> {
    using std::vector<std::vector<Edge<T>>>::vector;
    void add_edge(int u, int v, T w, bool directed = false) {
        (*this)[u].emplace_back(v, w);
        if (directed) return;
        (*this)[v].emplace_back(u, w);
    }
};

struct graph : std::vector<std::vector<int>> {
    using std::vector<std::vector<int>>::vector;
    void add_edge(int u, int v, bool directed = false) {
        (*this)[u].emplace_back(v);
        if (directed) return;
        (*this)[v].emplace_back(u);
    }
};

constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;

constexpr int INF = std::numeric_limits<int>::max() / 2;

const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};

}  // namespace ebi

#line 2 "convolution/ntt.hpp"

#line 4 "convolution/ntt.hpp"
#include <array>
#line 8 "convolution/ntt.hpp"

#line 2 "math/internal_math.hpp"

#line 4 "math/internal_math.hpp"

namespace ebi {

namespace internal {

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    if (m == 880803841) return 26;
    assert(0);
    return -1;
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace ebi
#line 2 "utility/bit_operator.hpp"

namespace ebi {

constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

int bit_reverse(int n, int bit_size) {
    int rev_n = 0;
    for (int i = 0; i < bit_size; i++) {
        rev_n |= ((n >> i) & 1) << (bit_size - i - 1);
    }
    return rev_n;
}

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

int popcnt(int x) {
    return __builtin_popcount(x);
}

int msb(int x) {
    return (x == 0) ? -1 : 31 - __builtin_clz(x);
}

int bsf(int x) {
    return (x == 0) ? -1 : __builtin_ctz(x);
}

}  // namespace ebi
#line 2 "utility/modint_base.hpp"

#line 4 "utility/modint_base.hpp"

namespace ebi {

namespace internal {

struct modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

struct static_modint_base : modint_base {};

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

}  // namespace internal

}  // namespace ebi
#line 12 "convolution/ntt.hpp"

namespace ebi {

namespace internal {

template <class mint, int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct ntt_info {
    static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);

    std::array<mint, rank2 + 1> root, inv_root;

    ntt_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        inv_root[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            inv_root[i] = inv_root[i + 1] * inv_root[i + 1];
        }
    }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    int n = int(a.size());
    int bit_size = bsf(n);
    assert(n == 1 << ceil_pow2(n));
    // bit reverse
    for (int i = 0; i < n; i++) {
        int rev = bit_reverse(i, bit_size);
        if (i < rev) {
            std::swap(a[i], a[rev]);
        }
    }

    for (int bit = 0; bit < bit_size; bit++) {
        for (int i = 0; i < n / (1 << (bit + 1)); i++) {
            mint zeta1 = 1;
            mint zeta2 = info.root[1];
            for (int j = 0; j < (1 << bit); j++) {
                int idx = i * (1 << (bit + 1)) + j;
                int jdx = idx + (1 << bit);
                mint p1 = a[idx];
                mint p2 = a[jdx];
                a[idx] = p1 + zeta1 * p2;
                a[jdx] = p1 + zeta2 * p2;
                zeta1 *= info.root[bit + 1];
                zeta2 *= info.root[bit + 1];
            }
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static const ntt_info<mint> info;
    int n = int(a.size());
    int bit_size = bsf(n);
    assert(n == 1 << ceil_pow2(n));
    // bit reverse
    for (int i = 0; i < n; i++) {
        int rev = bit_reverse(i, bit_size);
        if (i < rev) std::swap(a[i], a[rev]);
    }

    for (int bit = 0; bit < bit_size; bit++) {
        for (int i = 0; i < n / (1 << (bit + 1)); i++) {
            mint zeta1 = 1;
            mint zeta2 = info.inv_root[1];
            for (int j = 0; j < (1 << bit); j++) {
                int idx = i * (1 << (bit + 1)) + j;
                int jdx = idx + (1 << bit);
                mint p1 = a[idx];
                mint p2 = a[jdx];
                a[idx] = p1 + zeta1 * p2;
                a[jdx] = p1 + zeta2 * p2;
                zeta1 *= info.inv_root[bit + 1];
                zeta2 *= info.inv_root[bit + 1];
            }
        }
    }
    mint inv_n = mint(n).inv();
    for (int i = 0; i < n; i++) {
        a[i] *= inv_n;
    }
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& f,
                                    const std::vector<mint>& g) {
    if (f.empty() || g.empty()) return {};
    int n = int(f.size()), m = int(g.size());
    std::vector<mint> c(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                c[i + j] += f[i] * g[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                c[i + j] += f[i] * g[j];
            }
        }
    }
    return c;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& f,
                              const std::vector<mint>& g) {
    if (f.empty() || g.empty()) return {};
    if (std::min(f.size(), g.size()) < 60) return convolution_naive(f, g);
    int n = 1 << ceil_pow2(f.size() + g.size() - 1);
    std::vector<mint> a(n), b(n);
    std::copy(f.begin(), f.end(), a.begin());
    std::copy(g.begin(), g.end(), b.begin());
    internal::butterfly(a);
    internal::butterfly(b);
    for (int i = 0; i < n; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(f.size() + g.size() - 1);
    return a;
}

}  // namespace ebi
#line 2 "fps/fps.hpp"

#line 7 "fps/fps.hpp"

namespace ebi {

template <class mint, std::vector<mint> (*convolution)(
                          const std::vector<mint> &, const std::vector<mint> &)>
struct FormalPowerSeries : std::vector<mint> {
  private:
    using std::vector<mint>::vector;
    using std::vector<mint>::vector::operator=;
    using FPS = FormalPowerSeries;

  public:
    FPS operator+(const FPS &rhs) const noexcept {
        return FPS(*this) += rhs;
    }
    FPS operator-(const FPS &rhs) const noexcept {
        return FPS(*this) -= rhs;
    }
    FPS operator*(const FPS &rhs) const noexcept {
        return FPS(*this) *= rhs;
    }
    FPS operator/(const FPS &rhs) const noexcept {
        return FPS(*this) /= rhs;
    }
    FPS operator%(const FPS &rhs) const noexcept {
        return FPS(*this) %= rhs;
    }

    FPS operator+(const mint &rhs) const noexcept {
        return FPS(*this) += rhs;
    }
    FPS operator-(const mint &rhs) const noexcept {
        return FPS(*this) -= rhs;
    }
    FPS operator*(const mint &rhs) const noexcept {
        return FPS(*this) *= rhs;
    }
    FPS operator/(const mint &rhs) const noexcept {
        return FPS(*this) /= rhs;
    }

    FPS &operator+=(const FPS &rhs) noexcept {
        if (this->size() < rhs.size()) this->resize(rhs.size());
        for (int i = 0; i < (int)rhs.size(); ++i) {
            (*this)[i] += rhs[i];
        }
        return *this;
    }

    FPS &operator-=(const FPS &rhs) noexcept {
        if (this->size() < rhs.size()) this->resize(rhs.size());
        for (int i = 0; i < (int)rhs.size(); ++i) {
            (*this)[i] -= rhs[i];
        }
        return *this;
    }

    FPS &operator*=(const FPS &rhs) noexcept {
        *this = convolution(*this, rhs);
        return *this;
    }

    FPS &operator/=(const FPS &rhs) noexcept {
        int n = deg() - 1;
        int m = rhs.deg() - 1;
        if (n < m) {
            *this = {};
            return *this;
        }
        *this = (*this).rev() * rhs.rev().inv(n - m + 1);
        (*this).resize(n - m + 1);
        std::reverse((*this).begin(), (*this).end());
        return *this;
    }

    FPS &operator%=(const FPS &rhs) noexcept {
        *this -= *this / rhs * rhs;
        shrink();
        return *this;
    }

    FPS &operator+=(const mint &rhs) noexcept {
        if (this->empty()) this->resize(1);
        (*this)[0] += rhs;
        return *this;
    }

    FPS &operator-=(const mint &rhs) noexcept {
        if (this->empty()) this->resize(1);
        (*this)[0] -= rhs;
        return *this;
    }

    FPS &operator*=(const mint &rhs) noexcept {
        for (int i = 0; i < deg(); ++i) {
            (*this)[i] *= rhs;
        }
        return *this;
    }
    FPS &operator/=(const mint &rhs) noexcept {
        mint inv_rhs = rhs.inv();
        for (int i = 0; i < deg(); ++i) {
            (*this)[i] *= inv_rhs;
        }
        return *this;
    }

    FPS operator>>(int d) const {
        if (deg() <= d) return {};
        FPS f = *this;
        f.erase(f.begin(), f.begin() + d);
        return f;
    }

    FPS operator<<(int d) const {
        FPS f = *this;
        f.insert(f.begin(), d, 0);
        return f;
    }

    FPS operator-() const {
        FPS g(this->size());
        for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i];
        return g;
    }

    FPS pre(int sz) const {
        return FPS(this->begin(), this->begin() + std::min(deg(), sz));
    }

    FPS rev() const {
        auto f = *this;
        std::reverse(f.begin(), f.end());
        return f;
    }

    FPS differential() const {
        int n = deg();
        FPS g(std::max(0, n - 1));
        for (int i = 0; i < n - 1; i++) {
            g[i] = (*this)[i + 1] * (i + 1);
        }
        return g;
    }

    FPS integral() const {
        int n = deg();
        FPS g(n + 1);
        g[0] = 0;
        if (n > 0) g[1] = 1;
        auto mod = mint::mod();
        for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i);
        for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i];
        return g;
    }

    FPS inv(int d = -1) const {
        int n = 1;
        if (d < 0) d = deg();
        FPS g(n);
        g[0] = (*this)[0].inv();
        while (n < d) {
            n <<= 1;
            g = (g * 2 - g * g * this->pre(n)).pre(n);
        }
        g.resize(d);
        return g;
    }

    FPS log(int d = -1) const {
        assert((*this)[0].val() == 1);
        if (d < 0) d = deg();
        return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral();
    }

    FPS exp(int d = -1) const {
        assert((*this)[0].val() == 0);
        int n = 1;
        if (d < 0) d = deg();
        FPS g(n);
        g[0] = 1;
        while (n < d) {
            n <<= 1;
            g = (g * (this->pre(n) - g.log(n) + 1)).pre(n);
        }
        g.resize(d);
        return g;
    }

    FPS pow(int64_t k, int d = -1) const {
        const int n = deg();
        if (d < 0) d = n;
        if (k == 0) {
            FPS f(d);
            if (d > 0) f[0] = 1;
            return f;
        }
        for (int i = 0; i < n; i++) {
            if ((*this)[i] != 0) {
                mint rev = (*this)[i].inv();
                FPS f = (((*this * rev) >> i).log(d) * k).exp(d);
                f *= (*this)[i].pow(k);
                f = (f << (i * k)).pre(d);
                if (f.deg() < d) f.resize(d);
                return f;
            }
            if (i + 1 >= (d + k - 1) / k) break;
        }
        return FPS(d);
    }

    int deg() const {
        return (*this).size();
    }

    void shrink() {
        while ((!this->empty()) && this->back() == 0) this->pop_back();
    }

    int count_terms() const {
        int c = 0;
        for (int i = 0; i < deg(); i++) {
            if ((*this)[i] != 0) c++;
        }
        return c;
    }

    std::optional<FPS> sqrt(int d = -1) const;
};

}  // namespace ebi
#line 2 "math/combination.hpp"

#line 5 "math/combination.hpp"

namespace ebi {

template <class mint>
struct combination {
    combination(int n) : m(n), fact(n + 1), inv_fact(n + 1) {
        fact[0] = 1;
        for (int i = 1; i <= n; i++) {
            fact[i] = fact[i - 1] * i;
        }
        inv_fact[n] = fact[n].inv();
        for (int i = n; i > 0; i--) {
            inv_fact[i - 1] = inv_fact[i] * i;
        }
    }

    mint operator()(int n, int k) const {
        assert(n <= m);
        if (k < 0 || n < k) return 0;
        return fact[n] * inv_fact[k] * inv_fact[n - k];
    }

    mint f(int n) const {
        assert(n <= m);
        if (n < 0) return 0;
        return fact[n];
    }

    mint inv_f(int n) const {
        assert(n <= m);
        if (n < 0) return 0;
        return inv_fact[n];
    }

    mint inv(int n) const {
        assert(n <= m);
        return inv_fact[n] * fact[n-1];
    }

  private:
    int m;
    std::vector<mint> fact, inv_fact;
};

}  // namespace ebi
#line 2 "utility/modint.hpp"

#line 6 "utility/modint.hpp"

#line 8 "utility/modint.hpp"

namespace ebi {

template <int m> struct static_modint : internal::static_modint_base {
  private:
    using modint = static_modint;

  public:
    static constexpr int mod() {
        return m;
    }

    static constexpr modint raw(int v) {
        modint x;
        x._v = v;
        return x;
    }

    constexpr static_modint() : _v(0) {}

    constexpr static_modint(long long v) {
        v %= (long long)umod();
        if (v < 0) v += (long long)umod();
        _v = (unsigned int)v;
    }

    constexpr unsigned int val() const {
        return _v;
    }

    constexpr unsigned int value() const {
        return val();
    }

    constexpr modint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr modint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    constexpr modint &operator+=(const modint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr modint &operator-=(const modint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr modint &operator*=(const modint &rhs) {
        unsigned long long x = _v;
        x *= rhs._v;
        _v = (unsigned int)(x % (unsigned long long)umod());
        return *this;
    }
    constexpr modint &operator/=(const modint &rhs) {
        return *this = *this * rhs.inv();
    }

    constexpr modint operator+() const {
        return *this;
    }
    constexpr modint operator-() const {
        return modint() - *this;
    }

    constexpr modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, res = 1;
        while (n) {
            if (n & 1) res *= x;
            x *= x;
            n >>= 1;
        }
        return res;
    }
    constexpr modint inv() const {
        assert(_v);
        return pow(umod() - 2);
    }

    friend modint operator+(const modint &lhs, const modint &rhs) {
        return modint(lhs) += rhs;
    }
    friend modint operator-(const modint &lhs, const modint &rhs) {
        return modint(lhs) -= rhs;
    }
    friend modint operator*(const modint &lhs, const modint &rhs) {
        return modint(lhs) *= rhs;
    }

    friend modint operator/(const modint &lhs, const modint &rhs) {
        return modint(lhs) /= rhs;
    }
    friend bool operator==(const modint &lhs, const modint &rhs) {
        return lhs.val() == rhs.val();
    }
    friend bool operator!=(const modint &lhs, const modint &rhs) {
        return !(lhs == rhs);
    }

  private:
    unsigned int _v = 0;

    static constexpr unsigned int umod() {
        return m;
    }
};

template <int m>
std::istream &operator>>(std::istream &os, static_modint<m> &a) {
    long long x;
    os >> x;
    a = x;
    return os;
}
template <int m>
std::ostream &operator<<(std::ostream &os, const static_modint<m> &a) {
    return os << a.val();
}

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;

}  // namespace ebi
#line 169 "a.cpp"

namespace ebi {

using mint = modint998244353;
using FPS = FormalPowerSeries<mint, convolution>;

void main_() {
    int n;
    std::cin >> n;
    FPS f(n+1);
    combination<mint> comb(n);
    rep(i,0,n+1) {
        f[i] = (i + 1) * comb.inv_f(i);
    }
    mint ans = f.pow(n)[n-2] * comb.f(n-2) / mint(n).pow(n-2);
    std::cout << ans.val() << '\n';
}

}  // namespace ebi

int main() {
    std::cout << std::fixed << std::setprecision(15);
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
    int t = 1;
    // std::cin >> t;
    while (t--) {
        ebi::main_();
    }
    return 0;
}
0