結果
問題 | No.2289 順列ソート |
ユーザー | OnjoujiToki |
提出日時 | 2023-07-29 19:51:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 7,844 bytes |
コンパイル時間 | 1,507 ms |
コンパイル使用メモリ | 140,536 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-08 06:35:21 |
合計ジャッジ時間 | 2,265 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 1 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <cstdint> #include <cstring> #include <ctime> #include <deque> #include <iomanip> #include <iostream> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <unordered_map> #include <unordered_set> using namespace std; template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) { long long x; is >> x; a = ModInt<mod>(x); return (is); } }; struct Mo { int n; std::vector<std::pair<int, int>> lr; explicit Mo(int n) : n(n) {} void add(int l, int r) { /* [l, r) */ lr.emplace_back(l, r); } template <typename AL, typename AR, typename EL, typename ER, typename O> void build(const AL &add_left, const AR &add_right, const EL &erase_left, const ER &erase_right, const O &out) { int q = (int)lr.size(); int bs = n / std::min<int>(n, sqrt(q)); std::vector<int> ord(q); std::iota(std::begin(ord), std::end(ord), 0); std::sort(std::begin(ord), std::end(ord), [&](int a, int b) { int ablock = lr[a].first / bs, bblock = lr[b].first / bs; if (ablock != bblock) return ablock < bblock; return (ablock & 1) ? lr[a].second > lr[b].second : lr[a].second < lr[b].second; }); int l = 0, r = 0; for (auto idx : ord) { while (l > lr[idx].first) add_left(--l); while (r < lr[idx].second) add_right(r++); while (l < lr[idx].first) erase_left(l++); while (r > lr[idx].second) erase_right(--r); out(idx); } } template <typename A, typename E, typename O> void build(const A &add, const E &erase, const O &out) { build(add, add, erase, erase, out); } }; template <typename T> struct DSU { std::vector<T> f, siz; DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); } T leader(T x) { while (x != f[x]) x = f[x] = f[f[x]]; return x; } bool same(T x, T y) { return leader(x) == leader(y); } bool merge(T x, T y) { x = leader(x); y = leader(y); if (x == y) return false; siz[x] += siz[y]; f[y] = x; return true; } T size(int x) { return siz[leader(x)]; } }; using mint = ModInt<998244353>; const int MOD = 998244353; struct MComb { std::vector<mint> fact; std::vector<mint> inversed; MComb(int n) { // O(n+log(mod)) fact = std::vector<mint>(n + 1, 1); for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i); inversed = std::vector<mint>(n + 1); inversed[n] = fact[n] ^ (MOD - 2); for (int i = n - 1; i >= 0; i--) inversed[i] = inversed[i + 1] * mint(i + 1); } mint ncr(int n, int r) { if (n < r) return 0; return (fact[n] * inversed[r] * inversed[n - r]); } mint npr(int n, int r) { return (fact[n] * inversed[n - r]); } mint nhr(int n, int r) { assert(n + r - 1 < (int)fact.size()); return ncr(n + r - 1, r); } }; mint ncr(int n, int r) { mint res = 1; for (int i = n - r + 1; i <= n; i++) res *= i; for (int i = 1; i <= r; i++) res /= i; return res; } long long mod_pow(long long x, int n, int p) { long long ret = 1; while (n) { if (n & 1) (ret *= x) %= p; (x *= x) %= p; n >>= 1; } return ret; } namespace internal { template <class E> struct csr { std::vector<int> start; std::vector<E> elist; explicit csr(int n, const std::vector<std::pair<int, E>> &edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; } // namespace internal struct scc_graph { public: explicit scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } // @return pair of (# of scc, scc id) std::pair<int, std::vector<int>> scc_ids() { auto g = internal::csr<edge>(_n, edges); int now_ord = 0, group_num = 0; std::vector<int> visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto &x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector<std::vector<int>> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector<int> counts(group_num); for (auto x : ids.second) counts[x]++; std::vector<std::vector<int>> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector<std::pair<int, edge>> edges; }; void solve() { int n; std::cin >> n; std::vector a(n, 0); for (int &x : a) { std::cin >> x; x--; } int ans = 0; while (!std::is_sorted(a.begin(), a.end())) { for (int i = 0; i < n; i++) { if (i != a[i]) { for (int j = i + 1; j < n; j++) { if (a[j] == i) { std::swap(a[i], a[j]); ans += 1; break; } } } } } std::cout << ans << '\n'; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int t = 1; while (t--) solve(); return 0; }