結果
| 問題 |
No.2289 順列ソート
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-07-29 19:51:40 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,844 bytes |
| コンパイル時間 | 1,447 ms |
| コンパイル使用メモリ | 134,936 KB |
| 最終ジャッジ日時 | 2025-02-15 21:01:36 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
using namespace std;
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt &operator^=(long long p) { // quick_pow here:3
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {
x = p;
return ModInt(*this);
} // added by QCFium
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
struct Mo {
int n;
std::vector<std::pair<int, int>> lr;
explicit Mo(int n) : n(n) {}
void add(int l, int r) { /* [l, r) */
lr.emplace_back(l, r);
}
template <typename AL, typename AR, typename EL, typename ER, typename O>
void build(const AL &add_left, const AR &add_right, const EL &erase_left,
const ER &erase_right, const O &out) {
int q = (int)lr.size();
int bs = n / std::min<int>(n, sqrt(q));
std::vector<int> ord(q);
std::iota(std::begin(ord), std::end(ord), 0);
std::sort(std::begin(ord), std::end(ord), [&](int a, int b) {
int ablock = lr[a].first / bs, bblock = lr[b].first / bs;
if (ablock != bblock) return ablock < bblock;
return (ablock & 1) ? lr[a].second > lr[b].second
: lr[a].second < lr[b].second;
});
int l = 0, r = 0;
for (auto idx : ord) {
while (l > lr[idx].first) add_left(--l);
while (r < lr[idx].second) add_right(r++);
while (l < lr[idx].first) erase_left(l++);
while (r > lr[idx].second) erase_right(--r);
out(idx);
}
}
template <typename A, typename E, typename O>
void build(const A &add, const E &erase, const O &out) {
build(add, add, erase, erase, out);
}
};
template <typename T>
struct DSU {
std::vector<T> f, siz;
DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }
T leader(T x) {
while (x != f[x]) x = f[x] = f[f[x]];
return x;
}
bool same(T x, T y) { return leader(x) == leader(y); }
bool merge(T x, T y) {
x = leader(x);
y = leader(y);
if (x == y) return false;
siz[x] += siz[y];
f[y] = x;
return true;
}
T size(int x) { return siz[leader(x)]; }
};
using mint = ModInt<998244353>;
const int MOD = 998244353;
struct MComb {
std::vector<mint> fact;
std::vector<mint> inversed;
MComb(int n) { // O(n+log(mod))
fact = std::vector<mint>(n + 1, 1);
for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i);
inversed = std::vector<mint>(n + 1);
inversed[n] = fact[n] ^ (MOD - 2);
for (int i = n - 1; i >= 0; i--)
inversed[i] = inversed[i + 1] * mint(i + 1);
}
mint ncr(int n, int r) {
if (n < r) return 0;
return (fact[n] * inversed[r] * inversed[n - r]);
}
mint npr(int n, int r) { return (fact[n] * inversed[n - r]); }
mint nhr(int n, int r) {
assert(n + r - 1 < (int)fact.size());
return ncr(n + r - 1, r);
}
};
mint ncr(int n, int r) {
mint res = 1;
for (int i = n - r + 1; i <= n; i++) res *= i;
for (int i = 1; i <= r; i++) res /= i;
return res;
}
long long mod_pow(long long x, int n, int p) {
long long ret = 1;
while (n) {
if (n & 1) (ret *= x) %= p;
(x *= x) %= p;
n >>= 1;
}
return ret;
}
namespace internal {
template <class E>
struct csr {
std::vector<int> start;
std::vector<E> elist;
explicit csr(int n, const std::vector<std::pair<int, E>> &edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
} // namespace internal
struct scc_graph {
public:
explicit scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = internal::csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto &x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
void solve() {
int n;
std::cin >> n;
std::vector a(n, 0);
for (int &x : a) {
std::cin >> x;
x--;
}
int ans = 0;
while (!std::is_sorted(a.begin(), a.end())) {
for (int i = 0; i < n; i++) {
if (i != a[i]) {
for (int j = i + 1; j < n; j++) {
if (a[j] == i) {
std::swap(a[i], a[j]);
ans += 1;
break;
}
}
}
}
}
std::cout << ans << '\n';
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t = 1;
while (t--) solve();
return 0;
}