結果

問題 No.2266 Fractions (hard)
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-07-31 08:33:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,144 ms / 6,000 ms
コード長 32,875 bytes
コンパイル時間 3,139 ms
コンパイル使用メモリ 268,796 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-10 02:18:51
合計ジャッジ時間 13,451 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 12 ms
5,248 KB
testcase_01 AC 590 ms
5,248 KB
testcase_02 AC 73 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 5 ms
5,248 KB
testcase_06 AC 39 ms
5,248 KB
testcase_07 AC 18 ms
5,248 KB
testcase_08 AC 5 ms
5,248 KB
testcase_09 AC 3 ms
5,248 KB
testcase_10 AC 3 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 8 ms
5,248 KB
testcase_13 AC 489 ms
5,248 KB
testcase_14 AC 11 ms
5,248 KB
testcase_15 AC 13 ms
5,248 KB
testcase_16 AC 563 ms
5,248 KB
testcase_17 AC 388 ms
5,248 KB
testcase_18 AC 645 ms
5,248 KB
testcase_19 AC 631 ms
5,248 KB
testcase_20 AC 10 ms
5,248 KB
testcase_21 AC 664 ms
5,248 KB
testcase_22 AC 305 ms
5,248 KB
testcase_23 AC 16 ms
5,248 KB
testcase_24 AC 16 ms
5,248 KB
testcase_25 AC 937 ms
5,248 KB
testcase_26 AC 16 ms
5,248 KB
testcase_27 AC 559 ms
5,248 KB
testcase_28 AC 16 ms
5,248 KB
testcase_29 AC 15 ms
5,248 KB
testcase_30 AC 15 ms
5,248 KB
testcase_31 AC 16 ms
5,248 KB
testcase_32 AC 458 ms
5,248 KB
testcase_33 AC 2 ms
5,248 KB
testcase_34 AC 259 ms
5,248 KB
testcase_35 AC 228 ms
5,248 KB
testcase_36 AC 1,144 ms
5,248 KB
testcase_37 AC 803 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 * date   : 2023-07-31 08:33:02
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//

using namespace Nyaan;

// x / y (x > 0, y > 0) を管理、デフォルトで 1 / 1
// 入力が互いに素でない場合は gcd を取って格納
// seq : (1, 1) から (x, y) へのパス。右の子が正/左の子が負
template <typename Int>
struct SternBrocotTreeNode {
  using Node = SternBrocotTreeNode;

  Int lx, ly, x, y, rx, ry;
  vector<Int> seq;

  SternBrocotTreeNode() : lx(0), ly(1), x(1), y(1), rx(1), ry(0) {}

  SternBrocotTreeNode(Int X, Int Y) : SternBrocotTreeNode() {
    assert(1 <= X && 1 <= Y);
    Int g = gcd(X, Y);
    X /= g, Y /= g;
    while (min(X, Y) > 0) {
      if (X > Y) {
        int d = X / Y;
        X -= d * Y;
        go_right(d - (X == 0 ? 1 : 0));
      } else {
        int d = Y / X;
        Y -= d * X;
        go_left(d - (Y == 0 ? 1 : 0));
      }
    }
  }
  SternBrocotTreeNode(const pair<Int, Int> &xy)
      : SternBrocotTreeNode(xy.first, xy.second) {}
  SternBrocotTreeNode(const vector<Int> &_seq) : SternBrocotTreeNode() {
    for (const Int &d : _seq) {
      assert(d != 0);
      if (d > 0) go_right(d);
      if (d < 0) go_left(d);
    }
    assert(seq == _seq);
  }

  // pair<Int, Int> 型で分数を get
  pair<Int, Int> get() const { return make_pair(x, y); }
  // 区間の下限
  pair<Int, Int> lower_bound() const { return make_pair(lx, ly); }
  // 区間の上限
  pair<Int, Int> upper_bound() const { return make_pair(rx, ry); }

  // 根からの深さ
  Int depth() const {
    Int res = 0;
    for (auto &s : seq) res += abs(s);
    return res;
  }
  // 左の子に d 進む
  void go_left(Int d = 1) {
    if (d <= 0) return;
    if (seq.empty() or seq.back() > 0) seq.push_back(0);
    seq.back() -= d;
    rx += lx * d, ry += ly * d;
    x = rx + lx, y = ry + ly;
  }
  // 右の子に d 進む
  void go_right(Int d = 1) {
    if (d <= 0) return;
    if (seq.empty() or seq.back() < 0) seq.push_back(0);
    seq.back() += d;
    lx += rx * d, ly += ry * d;
    x = rx + lx, y = ry + ly;
  }
  // 親の方向に d 進む
  // d 進めたら true, 進めなかったら false を返す
  bool go_parent(Int d = 1) {
    if (d <= 0) return true;
    while (d) {
      if (seq.empty()) return false;
      Int d2 = min(d, abs(seq.back()));
      if (seq.back() > 0) {
        x -= rx * d2, y -= ry * d2;
        lx = x - rx, ly = y - ry;
        seq.back() -= d2;
      } else {
        x -= lx * d2, y -= ly * d2;
        rx = x - lx, ry = y - ly;
        seq.back() += d2;
      }
      d -= d2;
      if (seq.back() == 0) seq.pop_back();
      if (d2 == Int{0}) break;
    }
    return true;
  }
  // SBT 上の LCA
  static Node lca(const Node &lhs, const Node &rhs) {
    Node n;
    for (int i = 0; i < min<int>(lhs.seq.size(), rhs.seq.size()); i++) {
      Int val1 = lhs.seq[i], val2 = rhs.seq[i];
      if ((val1 < 0) != (val2 < 0)) break;
      if (val1 < 0) n.go_left(min(-val1, -val2));
      if (val1 > 0) n.go_right(min(val1, val2));
      if (val1 != val2) break;
    }
    return n;
  }
  friend ostream &operator<<(ostream &os, const Node &rhs) {
    os << "\n";
    os << "L : ( " << rhs.lx << ", " << rhs.ly << " )\n";
    os << "M : ( " << rhs.x << ", " << rhs.y << " )\n";
    os << "R : ( " << rhs.rx << ", " << rhs.ry << " )\n";
    os << "seq : " << rhs.seq << "\n";
    return os;
  }
  friend bool operator<(const Node &lhs, const Node &rhs) {
    return lhs.x * rhs.y < rhs.x * lhs.y;
  }
  friend bool operator==(const Node &lhs, const Node &rhs) {
    return lhs.x == rhs.x and lhs.y == rhs.y;
  }
};

// f(x) が true, かつ分子と分母が INF 以下である最小の既約分数 x を求める
// f(0) = true の場合は 0 を, true になる分数が存在しない場合は 1/0 を返す
template <typename I>
pair<I, I> binary_search_on_stern_brocot_tree(function<bool(pair<I, I>)> f,
                                              const I &INF) {
  // INF >= 1
  assert(1 <= INF);
  SternBrocotTreeNode<I> m;

  // INF 条件を超える or f(m) = return_value である
  auto over = [&](bool return_value) {
    return max(m.x, m.y) > INF or f(m.get()) == return_value;
  };

  if (f(make_pair(0, 1))) return m.lower_bound();
  int go_left = over(true);
  for (; true; go_left ^= 1) {
    if (go_left) {
      // f(M) = true -> (L, M] に答えがある
      // (f(L * b + M) = false) or (INF 超え) になる b の最小は?
      I a = 1;
      for (; true; a *= 2) {
        m.go_left(a);
        if (over(false)) {
          m.go_parent(a);
          break;
        }
      }
      for (a /= 2; a; a /= 2) {
        m.go_left(a);
        if (over(false)) m.go_parent(a);
      }
      m.go_left(1);
      if (max(m.get().first, m.get().second) > INF) return m.upper_bound();
    } else {
      // f(M) = false -> (M, R] に答えがある
      // (f(M + R * b) = true) or (INF 超え) になる b の最小は?
      I a = 1;
      for (; true; a *= 2) {
        m.go_right(a);
        if (over(true)) {
          m.go_parent(a);
          break;
        }
      }
      for (a /= 2; a; a /= 2) {
        m.go_right(a);
        if (over(true)) m.go_parent(a);
      }
      m.go_right(1);
      if (max(m.get().first, m.get().second) > INF) return m.upper_bound();
    }
  }
}

using namespace Nyaan;

using SBT = SternBrocotTreeNode<ll>;









#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder



namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
  assert(0 <= n && 1 <= m);
  if (m == 1) return 0;
  internal::barrett bt((unsigned int)(m));
  unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
  while (n) {
    if (n & 1) r = bt.mul(r, y);
    y = bt.mul(y, y);
    n >>= 1;
  }
  return r;
}

long long inv_mod(long long x, long long m) {
  assert(1 <= m);
  auto z = internal::inv_gcd(x, m);
  assert(z.first == 1);
  return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
  assert(r.size() == m.size());
  int n = int(r.size());
  // Contracts: 0 <= r0 < m0
  long long r0 = 0, m0 = 1;
  for (int i = 0; i < n; i++) {
    assert(1 <= m[i]);
    long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
    if (m0 < m1) {
      std::swap(r0, r1);
      std::swap(m0, m1);
    }
    if (m0 % m1 == 0) {
      if (r0 % m1 != r1) return {0, 0};
      continue;
    }
    // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

    // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
    // r2 % m0 = r0
    // r2 % m1 = r1
    // -> (r0 + x*m0) % m1 = r1
    // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
    // -> x = (r1 - r0) / g * inv(u0) (mod u1)

    // im = inv(u0) (mod u1) (0 <= im < u1)
    long long g, im;
    std::tie(g, im) = internal::inv_gcd(m0, m1);

    long long u1 = (m1 / g);
    // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
    if ((r1 - r0) % g) return {0, 0};

    // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
    long long x = (r1 - r0) / g % u1 * im % u1;

    // |r0| + |m0 * x|
    // < m0 + m0 * (u1 - 1)
    // = m0 + m0 * m1 / g - m0
    // = lcm(m0, m1)
    r0 += x * m0;
    m0 *= u1;  // -> lcm(m0, m1)
    if (r0 < 0) r0 += m0;
  }
  return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
  long long ans = 0;
  if (a < 0) {
    unsigned long long a2 = internal::safe_mod(a, m);
    ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
    a = a2;
  }
  if (b < 0) {
    unsigned long long b2 = internal::safe_mod(b, m);
    ans -= 1ULL * n * ((b2 - b) / m);
    b = b2;
  }
  if (a >= m) {
    ans += (n - 1) * n * (a / m) / 2;
    a %= m;
  }
  if (b >= m) {
    ans += n * (b / m);
    b %= m;
  }
  long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
  if (y_max == 0) return ans;
  ans += (n - (x_max + a - 1) / a) * y_max;
  ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
  return ans;
}

}  // namespace atcoder



//



using namespace std;




using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                              \
  template <class, class = void>                                         \
  struct has_##var : std::false_type {};                                 \
  template <class T>                                                     \
  struct has_##var<T, std::void_t<typename T::var>> : std::true_type {}; \
  template <class T>                                                     \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal



using namespace std;

namespace BinaryGCDImpl {
using u64 = unsigned long long;
using i8 = char;

u64 binary_gcd(u64 a, u64 b) {
  if (a == 0 || b == 0) return a + b;
  i8 n = __builtin_ctzll(a);
  i8 m = __builtin_ctzll(b);
  a >>= n;
  b >>= m;
  n = min(n, m);
  while (a != b) {
    u64 d = a - b;
    i8 s = __builtin_ctzll(d);
    bool f = a > b;
    b = f ? b : a;
    a = (f ? d : -d) >> s;
  }
  return a << n;
}

using u128 = __uint128_t;
// a > 0
int ctz128(u128 a) {
  u64 lo = a & u64(-1);
  return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64);
}
u128 binary_gcd128(u128 a, u128 b) {
  if (a == 0 || b == 0) return a + b;
  i8 n = ctz128(a);
  i8 m = ctz128(b);
  a >>= n;
  b >>= m;
  n = min(n, m);
  while (a != b) {
    u128 d = a - b;
    i8 s = ctz128(d);
    bool f = a > b;
    b = f ? b : a;
    a = (f ? d : -d) >> s;
  }
  return a << n;
}

}  // namespace BinaryGCDImpl

long long binary_gcd(long long a, long long b) {
  return BinaryGCDImpl::binary_gcd(abs(a), abs(b));
}
__int128_t binary_gcd128(__int128_t a, __int128_t b) {
  if (a < 0) a = -a;
  if (b < 0) b = -b;
  return BinaryGCDImpl::binary_gcd128(a, b);
}

/**
 * @brief binary GCD
 */


// T : 値, U : 比較用
template <typename T, typename U>
struct RationalBase {
  using R = RationalBase;
  using Key = T;
  T x, y;
  RationalBase() : x(0), y(1) {}
  template <typename T1>
  RationalBase(const T1& _x) : RationalBase<T, U>(_x, T1{1}) {}
  template <typename T1, typename T2>
  RationalBase(const T1& _x, const T2& _y) : x(_x), y(_y) {
    assert(y != 0);
    if (y == -1) x = -x, y = -y;
    if (y != 1) {
      T g;
      if constexpr (internal::is_broadly_integral_v<T>) {
        if constexpr (sizeof(T) == 16) {
          g = binary_gcd128(x, y);
        } else {
          g = binary_gcd(x, y);
        }
      } else {
        g = gcd(x, y);
      }
      if (g != 0) x /= g, y /= g;
      if (y < 0) x = -x, y = -y;
    }
  }
  // y = 0 の代入も認める
  static R raw(T _x, T _y) {
    R r;
    r.x = _x, r.y = _y;
    return r;
  }
  friend R operator+(const R& l, const R& r) {
    if (l.y == r.y) return R{l.x + r.x, l.y};
    return R{l.x * r.y + l.y * r.x, l.y * r.y};
  }
  friend R operator-(const R& l, const R& r) {
    if (l.y == r.y) return R{l.x - r.x, l.y};
    return R{l.x * r.y - l.y * r.x, l.y * r.y};
  }
  friend R operator*(const R& l, const R& r) { return R{l.x * r.x, l.y * r.y}; }
  friend R operator/(const R& l, const R& r) { return R{l.x * r.y, l.y * r.x}; }
  R& operator+=(const R& r) { return (*this) = (*this) + r; }
  R& operator-=(const R& r) { return (*this) = (*this) - r; }
  R& operator*=(const R& r) { return (*this) = (*this) * r; }
  R& operator/=(const R& r) { return (*this) = (*this) / r; }
  R operator-() const { return raw(-x, y); }
  R inverse() const {
    assert(x != 0);
    R r = raw(y, x);
    if (r.y < 0) r.x = -r.x, r.y = -r.y;
    return r;
  }
  R pow(long long p) const {
    R res{1}, base{*this};
    while (p) {
      if (p & 1) res *= base;
      base *= base;
      p >>= 1;
    }
    return res;
  }
  friend bool operator==(const R& l, const R& r) {
    return l.x == r.x && l.y == r.y;
  };
  friend bool operator!=(const R& l, const R& r) {
    return l.x != r.x || l.y != r.y;
  };
  friend bool operator<(const R& l, const R& r) {
    return U{l.x} * r.y < U{l.y} * r.x;
  };
  friend bool operator<=(const R& l, const R& r) { return l < r || l == r; }
  friend bool operator>(const R& l, const R& r) {
    return U{l.x} * r.y > U{l.y} * r.x;
  };
  friend bool operator>=(const R& l, const R& r) { return l > r || l == r; }
  friend ostream& operator<<(ostream& os, const R& r) {
    os << r.x;
    if (r.x != 0 && r.y != 1) os << "/" << r.y;
    return os;
  }

  T to_mint(T mod) const {
    assert(mod != 0);
    T a = y, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return U((u % mod + mod) % mod) * x % mod;
  }
};

using Rational = RationalBase<long long, __int128_t>;

template <typename R = Rational>
struct Binomial {
  vector<R> fc;
  Binomial(int = 0) { fc.emplace_back(1); }
  void extend() {
    int n = fc.size();
    R nxt = fc.back() * n;
    fc.push_back(nxt);
  }
  R fac(int n) {
    if (n < 0) return 0;
    while ((int)fc.size() <= n) extend();
    return fc[n];
  }
  R finv(int n) {
    if (n < 0) return 0;
    return fac(n).inverse();
  }
  R inv(int n) {
    if (n < 0) return -inv(-n);
    return R{1, max(n, 1)};
  }
  R C(int n, int r) {
    if (n < 0 or r < 0 or n < r) return R{0};
    return fac(n) * finv(n - r) * finv(r);
  }
  R operator()(int n, int r) { return C(n, r); }
  template <typename I>
  R multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return R{0};
      n += x;
    }
    R res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  R operator()(const vector<I>& r) {
    return multinomial(r);
  }
};


//



using namespace std;






using namespace std;

// floor(sqrt(n)) を返す (ただし n が負の場合は 0 を返す)
long long isqrt(long long n) {
  if (n <= 0) return 0;
  long long x = sqrt(n);
  while ((x + 1) * (x + 1) <= n) x++;
  while (x * x > n) x--;
  return x;
}


namespace EnumerateQuotientImpl {
long long fast_div(long long a, long long b) { return 1.0 * a / b; };
long long slow_div(long long a, long long b) { return a / b; };
}  // namespace EnumerateQuotientImpl

// { (q, l, r) : forall x in (l,r], floor(N/x) = q }
// を引数に取る関数f(q, l, r)を渡す。範囲が左に半開なのに注意
// 商は小さい方から走査する
template <typename T, typename F>
void enumerate_quotient(T N, const F& f) {
  T sq = isqrt(N);

#define FUNC(d)                       \
  T upper = N, quo = 0;               \
  while (upper > sq) {                \
    T thres = d(N, (++quo + 1));      \
    f(quo, thres, upper);             \
    upper = thres;                    \
  }                                   \
  while (upper > 0) {                 \
    f(d(N, upper), upper - 1, upper); \
    upper--;                          \
  }

  if (N <= 1e12) {
    FUNC(EnumerateQuotientImpl::fast_div);
  } else {
    FUNC(EnumerateQuotientImpl::slow_div);
  }
#undef FUNC
}

/**
 *  @brief 商の列挙
 */

/**
 * S(f, n) = f(1) + f(2) + ... + f(n) とする
 * f と g のディリクレ積を h とする
 * S(h, n) と S(g, n) が高速に計算できる, かつ g(1) = 1 のとき
 * S(f, N/i) を O(N^{3/4}) で列挙できる
 *
 * うまくやると O~(N^{2/3}) に落ちたり g(1) != 1 に対応できる
 * https://codeforces.com/blog/entry/54150
 */
template <typename T, typename SG, typename SH>
struct enumerate_mf_prefix_sum {
  long long N, sq;
  const SG sg;
  const SH sh;
  vector<T> small, large;
  T& ref(long long x) {
    if (x <= sq) {
      return small[x];
    } else if (N <= 1000000000000LL) {
      return large[1.0 * N / x];
    } else {
      return large[N / x];
    }
  }
  enumerate_mf_prefix_sum(long long _n, SG _sg, SH _sh)
      : N(_n), sq(isqrt(N)), sg(_sg), sh(_sh) {
    small.resize(sq + 1);
    large.resize(sq + 1);
    enumerate_quotient(N, [&](long long n, long long, long long) {
      T& cur = (ref(n) = sh(n));
      enumerate_quotient(n, [&](long long q, long long l, long long r) {
        if (q != n) cur -= ref(q) * (sg(r) - sg(l));
      });
    });
  }
  T get(long long n) { return ref(n); }
  T operator()(long long n) { return get(n); }
};

/**
 * @brief 乗法的関数のprefix sum の列挙
 */


using namespace Nyaan;

// k 番目に小さい
pl calc(ll N, ll K) {
  auto sg = [](int n) -> int { return n; };
  auto sh = [](int) -> int { return 1; };
  enumerate_mf_prefix_sum<int, decltype(sg), decltype(sh)> moe(N, sg, sh);

  auto cnt = [&](Rational f) -> ll {
    ll s = 0;
    enumerate_quotient(N, [&](ll q, ll l, ll r) {
      ll x = 0;
      x += atcoder::floor_sum(r + 1, f.y, f.x, 0);
      x -= atcoder::floor_sum(l + 1, f.y, f.x, 0);
      s += x * moe(q);
    });
    return s;
  };
  auto judge = [&](pair<ll, ll> f) -> bool {
    return cnt({f.first, f.second}) >= K;
  };
  auto ans = binary_search_on_stern_brocot_tree<ll>(judge, N);
  return {ans.first, ans.second};
}

void q() {
  inl(N, K);
  auto g = [](ll n) -> ll { return n; };
  auto h = [](ll n) -> ll { return n * (n + 1) / 2; };
  enumerate_mf_prefix_sum<ll, decltype(g), decltype(h)> tot(N, g, h);

  ll s = tot(N) - 1;
  trc(s);
  ll p = -1, q = -1;
  if (K <= s) {
    tie(p, q) = calc(N, K);
  } else if (K == s + 1) {
    p = q = 1;
  } else if (K <= s * 2 + 1) {
    tie(q, p) = calc(N, 2 * s + 1 - (K - 1));
  } else {
    // do nothing
  }
  if (p == -1) {
    out(-1);
  } else {
    cout << p << "/" << q << "\n";
  }
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0