結果
問題 | No.833 かっこいい電車 |
ユーザー | rlangevin |
提出日時 | 2023-08-01 12:20:24 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 391 ms / 2,000 ms |
コード長 | 5,804 bytes |
コンパイル時間 | 214 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 91,208 KB |
最終ジャッジ日時 | 2024-10-11 04:08:55 |
合計ジャッジ時間 | 10,135 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 280 ms
84,864 KB |
testcase_01 | AC | 74 ms
67,456 KB |
testcase_02 | AC | 74 ms
67,584 KB |
testcase_03 | AC | 75 ms
67,456 KB |
testcase_04 | AC | 74 ms
67,456 KB |
testcase_05 | AC | 74 ms
67,584 KB |
testcase_06 | AC | 74 ms
67,712 KB |
testcase_07 | AC | 77 ms
67,712 KB |
testcase_08 | AC | 74 ms
67,456 KB |
testcase_09 | AC | 75 ms
67,712 KB |
testcase_10 | AC | 342 ms
85,400 KB |
testcase_11 | AC | 391 ms
90,076 KB |
testcase_12 | AC | 271 ms
82,816 KB |
testcase_13 | AC | 256 ms
80,268 KB |
testcase_14 | AC | 364 ms
90,064 KB |
testcase_15 | AC | 280 ms
83,812 KB |
testcase_16 | AC | 244 ms
86,708 KB |
testcase_17 | AC | 297 ms
80,700 KB |
testcase_18 | AC | 378 ms
86,360 KB |
testcase_19 | AC | 248 ms
85,808 KB |
testcase_20 | AC | 141 ms
79,744 KB |
testcase_21 | AC | 364 ms
82,328 KB |
testcase_22 | AC | 297 ms
91,208 KB |
testcase_23 | AC | 250 ms
85,464 KB |
testcase_24 | AC | 295 ms
90,232 KB |
testcase_25 | AC | 366 ms
84,416 KB |
testcase_26 | AC | 262 ms
88,024 KB |
testcase_27 | AC | 327 ms
85,724 KB |
testcase_28 | AC | 295 ms
81,336 KB |
testcase_29 | AC | 303 ms
83,272 KB |
testcase_30 | AC | 278 ms
90,772 KB |
testcase_31 | AC | 280 ms
84,480 KB |
ソースコード
import sys input = sys.stdin.readline # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') import sys input = sys.stdin.readline class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1: len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ################################ class Fenwick_Tree: def __init__(self, n): self._n = n self.data = [0] * n def add(self, p, x): assert 0 <= p < self._n p += 1 while p <= self._n: self.data[p - 1] += x p += p & -p def sum(self, l, r): assert 0 <= l <= r <= self._n return self._sum(r) - self._sum(l) def _sum(self, r): s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s def get(self, k): k += 1 x, r = 0, 1 while r < self._n: r <<= 1 len = r while len: if x + len - 1 < self._n: if self.data[x + len - 1] < k: k -= self.data[x + len - 1] x += len len >>= 1 return x N, Q = map(int, input().split()) A = list(map(int, input().split())) T = Fenwick_Tree(N) for i in range(N): T.add(i, A[i]) SS = SortedSet() for i in range(N + 1): SS.add(i) for _ in range(Q): q, x = map(int, input().split()) x -= 1 if q == 1: SS.discard(x + 1) elif q == 2: SS.add(x + 1) elif q == 3: T.add(x, 1) else: left = SS.le(x) right = SS.gt(x) print(T.sum(left, right))