結果

問題 No.833 かっこいい電車
ユーザー rlangevinrlangevin
提出日時 2023-08-01 12:20:24
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 391 ms / 2,000 ms
コード長 5,804 bytes
コンパイル時間 214 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 91,208 KB
最終ジャッジ日時 2024-10-11 04:08:55
合計ジャッジ時間 10,135 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 280 ms
84,864 KB
testcase_01 AC 74 ms
67,456 KB
testcase_02 AC 74 ms
67,584 KB
testcase_03 AC 75 ms
67,456 KB
testcase_04 AC 74 ms
67,456 KB
testcase_05 AC 74 ms
67,584 KB
testcase_06 AC 74 ms
67,712 KB
testcase_07 AC 77 ms
67,712 KB
testcase_08 AC 74 ms
67,456 KB
testcase_09 AC 75 ms
67,712 KB
testcase_10 AC 342 ms
85,400 KB
testcase_11 AC 391 ms
90,076 KB
testcase_12 AC 271 ms
82,816 KB
testcase_13 AC 256 ms
80,268 KB
testcase_14 AC 364 ms
90,064 KB
testcase_15 AC 280 ms
83,812 KB
testcase_16 AC 244 ms
86,708 KB
testcase_17 AC 297 ms
80,700 KB
testcase_18 AC 378 ms
86,360 KB
testcase_19 AC 248 ms
85,808 KB
testcase_20 AC 141 ms
79,744 KB
testcase_21 AC 364 ms
82,328 KB
testcase_22 AC 297 ms
91,208 KB
testcase_23 AC 250 ms
85,464 KB
testcase_24 AC 295 ms
90,232 KB
testcase_25 AC 366 ms
84,416 KB
testcase_26 AC 262 ms
88,024 KB
testcase_27 AC 327 ms
85,724 KB
testcase_28 AC 295 ms
81,336 KB
testcase_29 AC 303 ms
83,272 KB
testcase_30 AC 278 ms
90,772 KB
testcase_31 AC 280 ms
84,480 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = sys.stdin.readline

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
import sys
input = sys.stdin.readline
 
class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170
 
    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None:
            a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size: size *
                    (i + 1) // bucket_size] for i in range(bucket_size)]
 
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)
 
    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i:
                yield j
 
    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i):
                yield j
 
    def __len__(self) -> int:
        return self.size
 
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
 
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1: len(s) - 1] + "}"
 
    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]:
                return a
        return a
 
    def __contains__(self, x: T) -> bool:
        if self.size == 0:
            return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x
 
    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i != len(a) and a[i] == x:
            return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True
 
    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0:
            return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x:
            return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0:
            self._build()
        return True
 
    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]
 
    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]
 
    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]
 
    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
 
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0:
            x += self.size
        if x < 0:
            raise IndexError
        for a in self.a:
            if x < len(a):
                return a[x]
            x -= len(a)
        raise IndexError
 
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans
 
    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans
 
################################

class Fenwick_Tree:
    def __init__(self, n):
        self._n = n
        self.data = [0] * n
 
    def add(self, p, x):
        assert 0 <= p < self._n
        p += 1
        while p <= self._n:
            self.data[p - 1] += x
            p += p & -p
 
    def sum(self, l, r):
        assert 0 <= l <= r <= self._n
        return self._sum(r) - self._sum(l)
 
    def _sum(self, r):
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s
    
    def get(self, k):
        k += 1
        x, r = 0, 1
        while r < self._n:
            r <<= 1
        len = r
        while len:
            if x + len - 1 < self._n:
                if self.data[x + len - 1] < k:
                    k -= self.data[x + len - 1]
                    x += len
            len >>= 1
        return x
    

N, Q = map(int, input().split())
A = list(map(int, input().split()))
T = Fenwick_Tree(N)
for i in range(N):
    T.add(i, A[i])

SS = SortedSet()
for i in range(N + 1):
    SS.add(i)

for _ in range(Q):
    q, x = map(int, input().split())
    x -= 1
    if q == 1:
        SS.discard(x + 1)
    elif q == 2:
        SS.add(x + 1)
    elif q == 3:
        T.add(x, 1)
    else:
        left = SS.le(x)
        right = SS.gt(x)
        print(T.sum(left, right))
0