結果

問題 No.2377 SUM AND XOR on Tree
ユーザー 👑 p-adic
提出日時 2023-08-03 13:46:50
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 761 ms / 4,000 ms
コード長 62,503 bytes
コンパイル時間 20,823 ms
コンパイル使用メモリ 339,816 KB
最終ジャッジ日時 2025-02-15 21:42:41
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( MESSAGE ) cerr << MESSAGE << endl;
#define COUT( ANSWER ) cout << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << (
      MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH bool searched_library = false; LibrarySearch( searched_library ); if( searched_library ){ QUIT; };
#define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES )
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( MESSAGE )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH
#define START_WATCH( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES )
#endif
// #define RANDOM_TEST
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS_ )
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void StartWatch( const string& process_name = "nothing" );
void StopWatch( const int& how_many_times = 1 );
#endif
#if defined( DEBUG ) && defined( RANDOM_TEST )
inline CEXPR( int , bound_random_test_num , 1000 );
#define START_MAIN FOR( random_test_num , 0 , bound_random_test_num ){ CERR( "(" << random_test_num << ")" );
ll GetRand( const ll& Rand_min , const ll& Rand_max );
#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )
#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); continue; } else { CERR( ( ANSWER ) << " != " <<
      guchoku ); QUIT; }
#define FINISH_MAIN CERR( "" ); }
#else
#define START_MAIN
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT
#define FINISH_MAIN
#endif
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<
          TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (
        EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \
CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "" : "" ) ); \
assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \
} else { \
CERR( " " << MINIMUM << ">" << MAXIMUM ); \
assert( MINIMUM <= MAXIMUM ); \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define ASK_NUMBER( ... ) \
CERR( "" ); \
CERR( "" ); \
problems = { __VA_ARGS__ }; \
problems_size = problems.size(); \
FOR( i , 0 , problems_size ){ \
CERR( i << ": " << problems[i] ); \
} \
cin >> num; \
CERR( "" ); \
if( num < 0 || num >= problems_size ){ \
CERR( "" << problems_size - 1 << "" ); \
CERR( "" ); \
CERR( "" ); \
return; \
} \
num_temp = 0; \
#define ASK_YES_NO( QUESTION ) \
CERR( "" ); \
CERR( QUESTION << "[y/n]" ); \
cin >> reply; \
if( reply != "y" && reply != "n" ){ \
CERR( "y/n" ); \
CERR( "" ); \
CERR( "" ); \
return; \
} \
CERR( "" ); \
#define SLS( CLASS ) void CLASS ## LibrarySearch( int& num , int& num_temp , string& reply , vector<string>& problems , int& problems_size )
#define CALL_SLS( CLASS ) CLASS ## LibrarySearch( num , num_temp , reply , problems , problems_size )
SLS( ExplicitExpression );
SLS( ExplicitExpressionUnary );
SLS( ExplicitExpressionMultiary );
SLS( ExplicitExpressionIteration );
SLS( ExplicitExpressionArraySum );
SLS( ExplicitExpressionFunctionOnPermutation );
SLS( ExplicitExpressionFunctionOnTree );
SLS( FunctionOnTree );
SLS( ExplicitExpressionFunctionOnNonTreeGraph );
SLS( ExplicitExpressionOrder );
SLS( ExplicitExpressionProbability );
SLS( ExplicitExpressionOther );
SLS( Maximisation );
SLS( MaximisationExplicitExpression );
SLS( MaximisationFunctionOnArray );
SLS( MaximisationSubArraySum );
SLS( MaximisationArrayFunction );
SLS( MaximisationArrayLength );
SLS( MaximisationFunctionOnTree );
SLS( MinimisationMovingCost );
SLS( MaximisationStringMatching );
SLS( MaximisationBipartiteMatching );
SLS( Counting );
SLS( CountingExplicitExpression );
SLS( CountingArray );
SLS( CountingSubArray );
SLS( CountingSumFixedSubArray );
SLS( CountingRestrctedSubArray );
SLS( CountingRestrctedContinuousSubArray );
SLS( CountingRestrctedDiscontinuousSubArray );
SLS( CountingRestrctedSubPermutation );
SLS( CountingArbitraryArray );
SLS( CountingPartitionOfTree );
SLS( CountingPalindrome );
SLS( Solving );
SLS( Query );
SLS( QueryArray );
SLS( QueryGraph );
SLS( Decision );
SLS( DecisionConnectedness );
SLS( DecisionHigherConnectedness );
SLS( DecisionGame );
SLS( DecisionAccessibility );
SLS( DecisionSatisfiability );
SLS( Construction );
void LibrarySearch( bool& searched_library )
{
int num = 0;
vector<string> problems{};
int problems_size = 13;
int num_temp = 0;
string reply{};
ASK_YES_NO( "" );
if( reply != "y" ){
CERR( "" );
CERR( "" );
return;
}
searched_library = true;
ASK_NUMBER(
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( ExplicitExpression );
} else if( num == num_temp++ ){
CALL_SLS( Maximisation );
} else if( num == num_temp++ ){
CALL_SLS( Counting );
} else if( num == num_temp++ ){
CALL_SLS( Solving );
} else if( num == num_temp++ ){
CALL_SLS( Query );
} else if( num == num_temp++ ){
CALL_SLS( Decision );
} else if( num == num_temp++ ){
CALL_SLS( Construction );
}
ASK_YES_NO( "" );
if( reply == "y" ){
CERR( "" );
CERR( "" );
CERR( "N" );
CERR( "使" );
CERR( "TLE" );
CERR( "- " );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\CoordinateCompress" );
CERR( "" );
CERR( "" );
CERR( "static" );
CERR( "" );
CERR( "" );
}
CERR( "" );
CERR( "" );
}
SLS( ExplicitExpression )
{
ASK_YES_NO( "" );
if( reply == "y" ){
CALL_SLS( ExplicitExpressionUnary );
} else {
CALL_SLS( ExplicitExpressionMultiary );
}
}
SLS( ExplicitExpressionUnary )
{
CERR( "OEIS" );
CERR( "https://oeis.org/?language=japanese" );
CERR( "" );
CERR( "" );
CERR( "- 調" );
CERR( "- p使" );
CERR( "- pp" );
CERR( " " );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
SLS( ExplicitExpressionMultiary )
{
ASK_YES_NO( "" );
if( reply == "y" ){
CALL_SLS( ExplicitExpressionIteration );
} else {
ASK_NUMBER(
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionArraySum );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionFunctionOnPermutation );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionFunctionOnTree );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionFunctionOnNonTreeGraph );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionOrder );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionProbability );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionOther );
}
}
}
SLS( ExplicitExpressionIteration )
{
CERR( "NTK" );
CERR( "- O((N + T)log_2 K)" );
CERR( " \\Mathematics\\Function\\Iteration\\Doubling" );
CERR( "- O(TN)" );
CERR( " \\Mathematics\\Function\\Iteration\\LoopDetection" );
CERR( "- O(N)" );
CERR( "" );
}
SLS( ExplicitExpressionArraySum )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "f" );
CERR( "f" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "\\Mathematics\\Arithmetic\\Mod" );
CERR( "\\Mathematics\\Polynoial" );
CERR( "" );
} else if( num == num_temp++ ){
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CALL_SLS( ExplicitExpressionFunctionOnTree );
CERR( "" );
CERR( "f" );
CERR( "f" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "" );
}
}
CERR( "" );
CERR( "" );
}
SLS( ExplicitExpressionFunctionOnPermutation )
{
CERR( "- " );
CERR( " - O(N log_2 N)O(N^2)" );
CERR( " - O(N log_2 N)O(N)" );
CERR( "- " );
CERR( " - O(N^3)" );
CERR( " - O(N 2^N)" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "- O(N^2)" );
CERR( "- O(N log_2 N)BIT" );
CERR( " \\Mathematics\\Combinatorial\\Permutation" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "i<j" );
CERR( "" );
CERR( "" );
}
SLS( ExplicitExpressionFunctionOnTree )
{
CALL_SLS( FunctionOnTree );
CERR( "" );
CERR( "DP" );
CERR( "\\Mathematics\\Geometry\\Graph\\DepthFirstSearch\\Tree" );
CERR( "" );
ASK_YES_NO( "fbit" );
if( reply == "y" ){
CERR( "Tvjbitsdp[v][s][j]" );
CERR( "v,s,j" );
CERR( "Tbit1" );
CERR( "ijbits=0,1dp[i][s][j]" );
CERR( "bitset" );
}
}
SLS( FunctionOnTree )
{
CERR( "f" );
CERR( "" );
CERR( "TPPpf(p)F(P)" );
CERR( "TT" );
CERR( "" );
CERR( "PppD(p)" );
CERR( "DP" );
CERR( "" );
CERR( "PpP'p" );
CERR( "F(P)=F(P')+f(p)" );
}
SLS( ExplicitExpressionFunctionOnNonTreeGraph )
{
CERR( "" );
CERR( "\\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( "" );
}
SLS( ExplicitExpressionOrder )
{
CERR( "Sa" );
CERR( "- si" );
CERR( " a[i]<=si" );
CERR( "- ia[i]Ss" );
CERR( " a[i]<=ss" );
CERR( "" );
}
SLS( ExplicitExpressionProbability )
{
CERR( "- " );
CERR( " - " );;
CERR( " \\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( " - " );
CERR( " - " );
CERR( "- " );
CERR( " - " );
CERR( " - " );
CERR( "" );
}
SLS( ExplicitExpressionOther )
{
CERR( "- " );
CERR( " - " );
CERR( " - " );
CERR( " - " );
CERR( " https://ei1333.hateblo.jp/entry/2021/07/30/144201" );
CERR( "- " );
CERR( "" );
}
SLS( Maximisation )
{
ASK_NUMBER(
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( MaximisationExplicitExpression);
} else if( num == num_temp++ ){
CALL_SLS( MaximisationFunctionOnArray );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationArrayLength );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationFunctionOnTree );
} else if( num == num_temp++ ){
CALL_SLS( MinimisationMovingCost );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationStringMatching );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationBipartiteMatching );
}
}
SLS( MaximisationExplicitExpression )
{
ASK_NUMBER(
"" ,
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- 調" );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
CERR( "" );
CERR( "" );
}
SLS( MaximisationFunctionOnArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( MaximisationSubArraySum );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationArrayFunction );
}
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " idp[i]" );
CERR( " i" );
CERR( "- v" );
CERR( " v" );
CERR( "" );
}
}
SLS( MaximisationSubArraySum )
{
CERR( "NWV" );
CERR( "- B=∞" );
CERR( "- B<∞O(2^N)" );
CERR( "- B<∞O(N 2^{N/2})" );
CERR( "- B<∞O(NV)[B-V,B+V]" );
CERR( " " );
CERR( " https://stackoverflow.com/a/18949218" );
CERR( "- W10^5O((N+W)log_2 W)" );
CERR( " " );
CERR( " \\Mathematics\\Polynomial" );
CERR( "- O(N 2^N)bit" );
CERR( "" );
}
SLS( MaximisationArrayFunction )
{
CERR( "FA" );
CERR( "BF(B)" );
CERR( "fx" );
CERR( "- ixX(i)" );
CERR( "- ixi+1xdX(i)" );
CERR( "" );
CERR( "- O(sum_i X(i) dX(i))fxO(1)" );
CERR( " ix" );
CERR( "- O(N log_2 X(N))" );
CERR( " - fxO(N)x調x" );
CERR( " - fxO(N/x)x" );
CERR( "- O(N log_2 N)xfxO(log_2 N)" );
CERR( " x" );
CERR( "" );
}
SLS( MaximisationArrayLength )
{
CERR( "" );
CERR( "- " );
CERR( " " );
CERR( " \\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence" );
CERR( "- " );
CERR( " " );
CERR( " \\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence\\Subwalk" );
CERR( "" );
}
SLS( MaximisationFunctionOnTree )
{
CALL_SLS( FunctionOnTree );
CERR( "iF(P)dp[i]" );
CERR( "iO(N^2×f)" );
CERR( "" );
}
SLS( MinimisationMovingCost )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CERR( "" );
CERR( "- BFSDijkstra" );
CERR( " \\Mathematics\\Geometry\\Graph\\BreadthFirst" );
CERR( " \\Mathematics\\Geometry\\Graph\\Dijkstra" );
CERR( "- " );
CERR( " - O(V^3)FloydWarshall" );
CERR( " \\Mathematics\\Geometry\\Graph\\FloydWarshall" );
CERR( " - maxO(E(log_2 E + α(V)))UnionFind" );
CERR( " \\Utility\\VLTree\\UnionFindForest" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "HeldKarp" );
}
}
SLS( MaximisationStringMatching )
{
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( " - O(N)" );
CERR( " - O(N)" );
CERR( "- " );
CERR( " \\Utility\\String\\RollingHash" );
CERR( "- Z" );
CERR( " https://qiita.com/Pro_ktmr/items/16904c9570aa0953bf05" );
CERR( "- {0,1}" );
CERR( " " );
CERR( " \\Mathematics\\Arithmetic\\Mod" );
CERR( " \\Mathematics\\Polynomial" );
CERR( "" );
}
SLS( MaximisationBipartiteMatching )
{
CERR( "HopcroftKarp" );
CERR( "\\Mathematics\\Geometry\\Graph\\HopcroftKarp" );
CERR( "" );
}
SLS( Counting )
{
ASK_NUMBER(
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( CountingExplicitExpression );
} else if( num == num_temp++ ){
CALL_SLS( CountingArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingPartitionOfTree );
} else if( num == num_temp++ ){
CALL_SLS( CountingPalindrome );
}
}
SLS( CountingExplicitExpression )
{
CERR( "- " );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
SLS( CountingArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( CountingSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingArbitraryArray );
}
}
SLS( CountingSubArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( CountingSumFixedSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingRestrctedSubArray );
}
}
SLS( CountingSumFixedSubArray )
{
CERR( "NW" );
CERR( "- O(2^N)" );
CERR( "- O(2^N)" );
CERR( "- O(2^{N/2}N)" );
CERR( " " );
CERR( "- W10^5O((N+W)log_2 W)" );
CERR( " " );
CERR( " \\Mathematics\\Arithmetic\\Mod" );
CERR( " \\Mathematics\\Polynomial" );
CERR( "" );
}
SLS( CountingRestrctedSubArray )
{
ASK_NUMBER(
"" ,
"" ,
""
);
CERR( "NAL+n<=N+1n,L" );
CERR( "- iQ(i)" );
CERR( "- 0<=l<Ln-tuple(b_0,...,b_{n-1})R_l(b_0,...,b_{n-1})" );
CERR( "BP(B)" );
CERR( "B|B|Q(|B|)|B|<L+n0<=l<=|B|-n" );
CERR( " R_l(B_l,...,B_{l+n-1})" );
CERR( "" );
CERR( "" );
CERR( "N>=3(n,L)=(2,2)" );
CERR( "- Q(i)=i=3" );
CERR( "- R_0(b_0,b_1)=b_0<b_1" );
CERR( "- R_1(b_0,b_1)=b_0>b_1" );
CERR( "" );
CERR( "" );
if( num == num_temp++ ){
CALL_SLS( CountingRestrctedContinuousSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingRestrctedDiscontinuousSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingRestrctedSubPermutation );
}
CERR( "" );
CERR( "" );
CERR( "R_l(B)gcdmax" );
CERR( "" );
CERR( "\\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( "" );
}
SLS( CountingRestrctedContinuousSubArray )
{
CERR( "P(B)AB" );
CERR( "- R_llO(N)" );
CERR( "- R_ll" );
CERR( " - O(N^2)" );
CERR( " - O(N^2)R_l" );
CERR( "" );
}
SLS( CountingRestrctedDiscontinuousSubArray )
{
CERR( "P(B)AB" );
CERR( "- n-1<=i<=max{j<=N|Q(j)}i" );
CERR( "- (0,1,...,N-1)n-1s" );
CERR( "" );
CERR( "i0<=l<=i-nR_l(B)" );
CERR( " n-1sABdp[i][s]" );
CERR( "i,s" );
CERR( "\\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence" );
CERR( "\\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence\\Subwalk" );
CERR( "" );
}
SLS( CountingPartitionOfTree )
{
CALL_SLS( FunctionOnTree );
CERR( "F(P)P" );
CERR( "iF(P)=vPdp[i][v]" );
CERR( "i,vO(N^2 v_max×f)" );
CERR( "" );
}
SLS( CountingRestrctedSubPermutation )
{
CERR( "P(B)AB" );
CERR( "- n-1<=|S|<=max{j<=N|Q(j)}(0,1,...,N-1)S" );
CERR( "- Sn-1s" );
CERR( "" );
CERR( "0<=l<=|S|-nR_l(B)n-1s" );
CERR( " SABdp[S][s]" );
CERR( "S,s" );
CERR( "" );
CERR( "s[0,N)^{n-1}S" );
CERR( "" );
CERR( "" );
CERR( "N" );
CERR( "7! ≒ 5×10^3" );
CERR( "8! ≒ 4×10^4" );
CERR( "9! ≒ 4×10^5" );
CERR( "10! ≒ 4×10^6" );
CERR( "11! ≒ 4×10^7" );
CERR( "12! ≒ 5×10^8" );
CERR( "" );
CERR( "\\Mathematics\\Combinatorial\\Permutation" );
CERR( "" );
}
SLS( CountingArbitraryArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "- " );
CERR( "- " );
CERR( " ivdp[i][v]" );
CERR( " i,v" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( "- " );
CERR( "- " );
}
CERR( "" );
}
SLS( CountingPalindrome )
{
CERR( "" );
CERR( "- O(N^2)" );
CERR( "- O(N^2)Manacher" );
CERR( " https://snuke.hatenablog.com/entry/2014/12/02/235837" );
CERR( "" );
}
SLS( Solving )
{
CERR( "- 調" );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
SLS( Query )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( QueryArray );
} else if( num == num_temp++ ){
CALL_SLS( QueryGraph );
}
}
SLS( QueryArray )
{
ASK_NUMBER(
"+使" ,
"使" ,
"*使" ,
"*使" ,
"(*,\\cdot)使" ,
"(+,\\cdot)使" ,
"max使"
);
if( num == num_temp++ ){
CERR( "- BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\Tree\\DifferenceSeqeuence" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\IntervalMax\\Template" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template\\Monoid" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Monoid" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SegmentTree" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " \\Mathematics\\Function\\Encoder" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Dual" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\LazyEvaluation" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "max" );
CERR( "調max調" );
CERR( "" );
CERR( "" );
CERR( "maxmax調" );
CERR( "maxmax" );
CERR( "調" );
CERR( "調" );
CERR( "" );
CERR( "max{0,1}" );
CERR( "使" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "B_qmax(A_i,B_q)" );
CERR( "- A'={(A_i,i)|i}O(N log N)" );
CERR( "- (B_q,q)_qB'O(Q log Q)" );
CERR( "- NC=(0,...,0)O(N)" );
CERR( "B'(B_q,q)" );
CERR( "A'A_i<B_qi" );
CERR( "- A'(A_i,i)O(N)" );
CERR( "- A_i0O(N log N)" );
CERR( "- C_i1O(log N)" );
CERR( "- A+C×B_qO(log N)" );
CERR( "O((N + Q)log N + Q log Q)" );
}
}
SLS( QueryGraph )
{
ASK_YES_NO( "" );
if( reply == "yes" ){
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\Tree\\DifferenceSeqeuence" );
} else {
CERR( "UnionFind" );
CERR( "\\Mathematics\\Geometry\\Graph\\DepthFirst\\Tree" );
CERR( "\\Utility\\VLTree" );
CERR( "\\Utility\\VLTree\\UnionFndForest" );
}
CERR( "" );
}
SLS( Decision )
{
ASK_NUMBER(
"0" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( DecisionConnectedness );
} else if( num == num_temp++ ){
CALL_SLS( DecisionHigherConnectedness );
} else if( num == num_temp++ ){
CALL_SLS( DecisionGame );
} else if( num == num_temp++ ){
CALL_SLS( DecisionAccessibility );
} else if( num == num_temp++ ){
CALL_SLS( DecisionSatisfiability );
}
}
SLS( DecisionConnectedness )
{
CERR( "UnionFind" );
CERR( "\\Mathematics\\Geometry\\Graph\\BreadthFirst" );
CERR( "\\Utility\\VLTree\\UnionFindForest" );
CERR( "" );
CERR( "" );
}
SLS( DecisionHigherConnectedness )
{
CERR( "- " );
CERR( " \\Mathematics\\Geometry\\Graph\\DepthFirst" );
CERR( "- " );
CERR( "" );
}
SLS( DecisionGame )
{
CERR( "" );
CERR( "" );
}
SLS( DecisionAccessibility )
{
ASK_YES_NO( "" );
if( reply == "yes" ){
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( "" );
} else {
CERR( "" );
CALL_SLS( MinimisationMovingCost );
}
CERR( "" );
CALL_SLS( MinimisationMovingCost );
}
SLS( DecisionSatisfiability )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CALL_SLS( DecisionConnectedness );
CERR( "" );
CERR( "" );
SLS( QueryArray );
} else if( num == num_temp++ ){
CERR( "" );
SLS( MaximisationBipartiteMatching );
}
}
SLS( Construction )
{
ASK_NUMBER(
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CERR( "p" );
} else if( num == num_temp++ ){
CERR( "" );
CALL_SLS( DecisionAccessibility );
} else if( num == num_temp++ ){
CERR( "" );
CALL_SLS( DecisionGame );
} else if( num == num_temp++ ){
CERR( "" );
}
}
#define DC_OF_FIRST_SEARCH(BREADTH)TE <int V_max> CL BREADTH ## FirstSearch_Body{PU:int m_V;int m_init;LI<int> m_next;bool m_found[V_max];int
    m_prev[V_max];IN BREADTH ## FirstSearch_Body(CRI V);IN BREADTH ## FirstSearch_Body(CRI V,CRI init);IN VO Reset(CRI init);IN VO Shift(CRI init
    );IN CRI SZ()CO;IN CRI init()CO;IN bool& found(CRI i);IN CRI prev(CRI i)CO;int Next();virtual LI<int> e(CRI t)= 0;};TE <int V_max,LI<int> E(CRI
    )> CL BREADTH ## FirstSearch:PU BREADTH ## FirstSearch_Body<V_max>{PU:TE<TY... Args> IN BREADTH ## FirstSearch(CO Args&... args);IN LI<int> e
    (CRI t);};TE <int V_max,LI<int> E(CRI)> VO BREADTH ## FirstConnectedComponent(CRI V,int(&vertex)[V_max],int& count);
#define DF_OF_FIRST_SEARCH(BREADTH,PUSH)TE <int V_max> IN BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body(CRI V):m_V(V),m_init
    (),m_next(),m_found(),m_prev(){assert(m_V <= V_max);for(int i = 0;i < m_V;i++){m_prev[i] = -1;}}TE <int V_max> IN BREADTH ## FirstSearch_Body
    <V_max>::BREADTH ## FirstSearch_Body(CRI V,CRI init):BREADTH ## FirstSearch_Body(V){m_init = init;m_next.push_back(m_init);m_found[m_init] =
    true;}TE <int V_max,LI<int> E(CRI)> TE <TY... Args> IN BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch(CO Args&... args):BREADTH ##
    FirstSearch_Body<V_max>(args...){}TE <int V_max> IN VO BREADTH ## FirstSearch_Body<V_max>::Reset(CRI init){m_init = init;assert(m_init < m_V
    );m_next.clear();m_next.push_back(m_init);for(int i = 0;i < m_V;i++){m_found[i] = i == m_init;m_prev[i] = -1;}}TE <int V_max> IN VO BREADTH ##
    FirstSearch_Body<V_max>::Shift(CRI init){m_init = init;assert(m_init < m_V);m_next.clear();if(! m_found[m_init]){m_next.push_back(m_init
    );m_found[m_init] = true;}}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::SZ()CO{RE m_V;}TE <int V_max> IN CRI BREADTH ##
    FirstSearch_Body<V_max>::init()CO{RE m_init;}TE <int V_max> IN bool& BREADTH ## FirstSearch_Body<V_max>::found(CRI i){assert(i < m_V);RE
    m_found[i];}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::prev(CRI i)CO{assert(i < m_V);RE m_prev[i];}TE <int V_max> int BREADTH ##
    FirstSearch_Body<V_max>::Next(){if(m_next.empty()){RE -1;}CO int i_curr = m_next.front();m_next.pop_front();LI<int> edge = e(i_curr);WH(! edge
    .empty()){CRI i = edge.front();bool& found_i = found(i);if(! found_i){m_next.PUSH(i);m_prev[i] = i_curr;found_i = true;}edge.pop_front();}RE
    i_curr;}TE <int V_max,LI<int> E(CRI)> IN LI <int> BREADTH ## FirstSearch<V_max,E>::e(CRI t){RE E(t);}TE <int V_max,LI<int> E(CRI)> VO BREADTH ##
    FirstConnectedComponentSearch(CRI V,int(&vertex)[V_max],int& count){BREADTH ## FirstSearch<V_max,E> bfs{V};count = 0;for(int i = 0;i < V;i
    ++){vertex[i] = -1;}for(int i = 0;i < V;i++){if(vertex[i] == -1){bfs.Shift(i);int j = bfs.Next();WH(j != -1?vertex[j] == 0:false){vertex[j] =
    count;j = bfs.Next();}count++;}}RE;}
DC_OF_FIRST_SEARCH(Depth);DF_OF_FIRST_SEARCH(Depth,push_front);
TE <int V_max,LI<int> E(CRI),int digit = 0>CL DepthFirstSearchOnTree:PU DepthFirstSearch<V_max,E>{PU:int m_reversed[V_max];VE<int> m_children[V_max]
    ;int m_children_num[V_max];bool m_set_children;int m_depth[V_max];int m_height[V_max];bool m_set_height;int m_weight[V_max];bool m_set_weight
    ;int m_doubling[digit][V_max];bool m_set_doubling;IN DepthFirstSearchOnTree(CRI V,CRI root);IN VO Reset(CRI init)= delete;IN VO Shift(CRI init)=
    delete;IN CRI Root()CO;IN CRI Parent(CRI i)CO;IN CO VE<int>& Children(CRI i);IN CRI Depth(CRI i)CO;IN CRI Height(CRI i);IN CRI Weight(CRI i);IN
    CRI NodeNumber(CRI i,CO bool& reversed = false)CO;IN CRI ChildrenNumber(CRI i);int Ancestor(int i,int n);int LCA(int i,int j);int LCA(int i,int
    j,int& i_prev,int& j_prev);TE <TY T,T m_T(const T&,const T&)>T RootingDP(const T(&a)[V_max]);TE <TY T,T m_T(CO T&,CO T&),CO T& e_T(),T f(CO T&
    ,CRI)> VO RerootingDP(T(&d)[V_max]);VO SetChildren();VO SetHeight();VO SetWeight();VO SetDoubling();};
TE <int V_max,LI<int> E(CRI),int digit> IN DepthFirstSearchOnTree<V_max,E,digit>::DepthFirstSearchOnTree(CRI V,CRI root):DepthFirstSearch<V_max,E>(V
    ,root),m_reversed(),m_children(),m_set_children(),m_depth(),m_height(),m_set_height(),m_weight(),m_set_weight(),m_doubling(),m_set_doubling
    (){int n = DepthFirstSearch<V_max,E>::SZ();WH(--n >= 0){CRI i = m_reversed[n] = DepthFirstSearch<V_max,E>::Next();CRI j = Parent(i);if(j != -1
    ){m_depth[i] = m_depth[j] + 1;}}}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Root()CO{RE
    DepthFirstSearch<V_max,E>::init();}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Parent(CRI i)CO{RE
    DepthFirstSearch<V_max,E>::prev(i);}TE <int V_max,LI<int> E(CRI),int digit> IN CO VE<int>& DepthFirstSearchOnTree<V_max,E,digit>::Children(CRI i
    ){if(! m_set_children){SetChildren();}RE m_children[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit
    >::Depth(CRI i)CO{RE m_depth[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Height(CRI i){if(!
    m_set_height){SetHeight();}RE m_height[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Weight(CRI i
    ){if(! m_set_weight){SetWeight();}RE m_weight[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit
    >::NodeNumber(CRI i,CO bool& reversed)CO{RE m_reversed[reversed?i:DepthFirstSearch<V_max,E>::SZ()- 1 - i];}TE <int V_max,LI<int> E(CRI),int
    digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::ChildrenNumber(CRI i){if(! m_set_children){SetChildren();}RE m_children_num[i];}TE <int
    V_max,LI<int> E(CRI),int digit>int DepthFirstSearchOnTree<V_max,E,digit>::Ancestor(int i,int n){if(! m_set_doubling){SetDoubling();}assert((n >>
    digit)== 0);int d = 0;WH(n != 0){if((n & 1)== 1){assert((i = m_doubling[d][i])!= -1);}d++;n >>= 1;}RE i;}TE <int V_max,LI<int> E(CRI),int digit
    >int DepthFirstSearchOnTree<V_max,E,digit>::LCA(int i,int j){int diff = Depth(i)- Depth(j);if(diff < 0){swap(i,j);diff *= -1;}i = Ancestor(i
    ,diff);if(i == j){RE i;}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j
    = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1);}}RE Parent(i);}TE <int V_max
    ,LI<int> E(CRI),int digit>int DepthFirstSearchOnTree<V_max,E,digit>::LCA(int i,int j,int& i_prev,int& j_prev){if(i == j){i_prev = j_prev = -1;RE
    i;}int diff = Depth(i)- Depth(j);if(diff < 0){RE LCA(j,i,j_prev,i_prev);}if(diff > 0){i_prev = Ancestor(i,diff - 1);i = Parent(i_prev);assert(i
    != -1);if(i == j){j_prev = -1;RE i;}}else if(! m_set_doubling){SetDoubling();}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] =
    m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j =
    doubling_d_j;assert(i != -1);assert(j != -1);}}i_prev = i;j_prev = j;RE Parent(i_prev);}TE <int V_max,LI<int> E(CRI),int digit>VO
    DepthFirstSearchOnTree<V_max,E,digit>::SetChildren(){assert(!m_set_children);m_set_children = true;CRI V = DepthFirstSearch<V_max,E>::SZ();for
    (int i = 0;i < V;i++){CRI j = Parent(i);if(j == -1){m_children_num[i] = -1;}else{VE<int>& m_children_j = m_children[j];m_children_num[i] =
    m_children_j.SZ();m_children_j.push_back(i);}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetHeight
    (){assert(!m_set_height);m_set_height = true;CRI V = DepthFirstSearch<V_max,E>::SZ();for(int i = 0;i < V;i++){CRI reversed_i = m_reversed[i];CRI
    parent_i = Parent(reversed_i);if(parent_i != -1){int& height_parent_i = m_height[parent_i];CRI height_i = m_height[reversed_i];height_parent_i >
    height_i?height_parent_i:height_parent_i = height_i + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit
    >::SetWeight(){assert(!m_set_weight);m_set_weight = true;CRI V = DepthFirstSearch<V_max,E>::SZ();for(int i = 0;i < V;i++){CRI reversed_i =
    m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){m_weight[parent_i] += m_weight[reversed_i] + 1;}}RE;}TE <int V_max,LI<int> E
    (CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetDoubling(){assert(!m_set_doubling);m_set_doubling = true;CRI V = DepthFirstSearch
    <V_max,E>::SZ();{int(&doubling_0)[V_max] = m_doubling[0];CRI r = Root();for(int i = 0;i < V;i++){doubling_0[i] = Parent(i);}}for(int d = 1;d <
    digit;d++){int(&doubling_d)[V_max] = m_doubling[d];int(&doubling_d_minus)[V_max] = m_doubling[d-1];for(int i = 0;i < V;i++){CRI
    doubling_d_minus_i = doubling_d_minus[i];doubling_d[i] = doubling_d_minus_i == -1?-1:doubling_d_minus[doubling_d_minus_i];}}RE;}TE <int V_max,LI
    <int> E(CRI),int digit> TE <TY T,T m_T(const T&,const T&)>T DepthFirstSearchOnTree<V_max,E,digit>::RootingDP(const T(&a)[V_max]){if(!
    m_set_children){SetChildren();}CRI V = DepthFirstSearch<V_max,E>::SZ();LI<T> children_value[V_max] = {};T temp;for(int n = 0;n < V;n++){CRI i =
    NodeNumber(n,true);LI<T>& children_value_i = children_value[i];temp = a[i];WH(!children_value_i.empty()){temp = m_T(temp,children_value_i.front
    ());children_value_i.pop_front();}CRI j = Parent(i);if(j != -1){children_value[j].push_back(temp);}}RE temp;}TE <int V_max,LI<int> E(CRI),int
    digit> TE <TY T,T m_T(CO T&,CO T&),CO T& e_T(),T f(CO T&,CRI)>VO DepthFirstSearchOnTree<V_max,E,digit>::RerootingDP(T(&d)[V_max]){if(!
    m_set_children){SetChildren();}CRI V = DepthFirstSearch<V_max,E>::SZ();CO T& e = e_T();VE<T> children_value[V_max] ={};VE<T> left_sum[V_max] ={}
    ;VE<T> right_sum[V_max] ={};for(int i = 0;i < V;i++){children_value[i].resize(m_children[i].SZ());}for(int n = 0;n < V;n++){CRI i = NodeNumber(n
    ,true);CO VE<T>& children_value_i = children_value[i];CO int SZ_i = children_value_i.SZ();T temp = e;VE<T>& left_sum_i = left_sum[i];left_sum_i
    .reserve(SZ_i + 1);left_sum_i.push_back(temp);for(int m = 0;m < SZ_i;m++){left_sum_i.push_back(temp = m_T(temp,children_value_i[m]));}CRI j =
    Parent(i);if(j != -1){children_value[j][m_children_num[i]] = f(temp,i);}temp = e;VE<T>& right_sum_i = right_sum[i];right_sum_i.resize(SZ_i);for
    (int m = 1;m <= SZ_i;m++){right_sum_i[ SZ_i - m ] = temp;temp = m_T(children_value_i[SZ_i - m],temp);}}for(int n = 1;n < V;n++){CRI i =
    NodeNumber(n);CRI j = Parent(i);CRI k = ChildrenNumber(i);VE<T>& left_sum_i = left_sum[i];VE<T>& right_sum_i = right_sum[i];CO int SZ_i =
    right_sum_i.SZ();CO T rest_i = f(m_T(left_sum[j][k],right_sum[j][k]),j);for(int m = 0;m <= SZ_i;m++){T& left_sum_im = left_sum_i[m];left_sum_im
    = m_T(rest_i,left_sum_im);}}for(int i = 0;i < V;i++){d[i] = f(left_sum[i].back(),i);}RE;}
inline DEXPR( int , bound_N , 100000 , 100 ); // 05
list<int> e[bound_N] = {};
list<int> E( const int& i ) { return e[i]; }
using T = vector<vector<ll> >;
T A[bound_N] = {};
inline CEXPR( ll , P , 998244353 );
T m_T( const T& s , const T& t )
{
if( s.empty() ){
return t;
}
if( t.empty() ){
return s;
}
T answer = T( 30 , { 0 , 0 } );
FOR( d , 0 , 30 ){
FOR( is , 0 , 2 ){
( answer[d][is] += s[d][is] * t[d][1] ) %= P;
( answer[d][is ^ 0] += s[d][is] * t[d][0] ) %= P;
( answer[d][is ^ 1] += s[d][is] * t[d][1] ) %= P;
}
}
return answer;
}
int main()
{
UNTIE;
LIBRARY_SEARCH;
START_MAIN;
// DEXPR( int , bound_T , 100000 , 100 );
// CIN_ASSERT( T , 1 , bound_T );
// REPEAT( T ){
// }
// CEXPR( int , bound_N , 10 );
// CEXPR( int , bound_N , 1000000000 ); // 09
// CEXPR( ll , bound_N , 1000000000000000000 ); // 018
CIN_ASSERT( N , 1 , bound_N );
FOR( n , 1 , N ){
CIN_ASSERT( u , 1 , N );
CIN_ASSERT( v , 1 , N );
u--;
v--;
e[u].push_back( v );
e[v].push_back( u );
}
CEXPR( int , bound_Ai , ( 1 << 30 ) - 1 );
FOR( i , 0 , N ){
CIN_ASSERT( Ai , 0 , bound_Ai );
T& A_i = A[i] = T( 30 , { 0 , 0 } );
FOR( d , 0 , 30 ){
A_i[d][ ( Ai >> d ) & 1 ] = 1;
}
}
DepthFirstSearchOnTree<bound_N,E> dfst{ N , 0 };
T val = dfst.RootingDP<T,m_T>( A );
// // CEXPR( int , bound_M , 10 );
// DEXPR( int , bound_M , 100000 , 100 ); // 05
// // CEXPR( int , bound_M , 1000000000 ); // 09
// // CEXPR( ll , bound_M , 1000000000000000000 ); // 018
// CIN_ASSERT( M , 1 , bound_M );
// DEXPR( int , bound_Q , 100000 , 100 );
// CIN_ASSERT( Q , 1 , bound_Q );
// REPEAT( Q ){
// COUT( N );
// }
// ll guchoku = Guchoku();
// ll answer = 0;
// if( answer == guchoku ){
// CERR( answer << " == " << guchoku );
// } else {
// CERR( answer << " != " << guchoku );
// QUIT;
// }
ll answer = 0;
ll power = 1;
FOR( d , 0 , 30 ){
( answer += val[d][1] * power ) %= P;
( power <<= 1 ) < P ? power : power -= P;
}
COUT( ( answer ) );
FINISH_MAIN;
QUIT;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0