結果

問題 No.2402 Dirty Stairs and Shoes
ユーザー ktr216ktr216
提出日時 2023-08-04 21:34:56
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 35 ms / 2,000 ms
コード長 4,486 bytes
コンパイル時間 1,962 ms
コンパイル使用メモリ 183,096 KB
実行使用メモリ 21,724 KB
最終ジャッジ日時 2024-12-20 02:28:18
合計ジャッジ時間 3,564 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
8,828 KB
testcase_01 AC 5 ms
8,900 KB
testcase_02 AC 5 ms
8,832 KB
testcase_03 AC 22 ms
14,772 KB
testcase_04 AC 7 ms
9,636 KB
testcase_05 AC 35 ms
20,964 KB
testcase_06 AC 14 ms
12,372 KB
testcase_07 AC 8 ms
9,984 KB
testcase_08 AC 11 ms
11,524 KB
testcase_09 AC 16 ms
13,860 KB
testcase_10 AC 22 ms
15,272 KB
testcase_11 AC 14 ms
12,056 KB
testcase_12 AC 10 ms
9,984 KB
testcase_13 AC 17 ms
16,888 KB
testcase_14 AC 24 ms
21,724 KB
testcase_15 AC 16 ms
16,416 KB
testcase_16 AC 9 ms
11,544 KB
testcase_17 AC 19 ms
18,280 KB
testcase_18 AC 17 ms
15,776 KB
testcase_19 AC 22 ms
20,040 KB
testcase_20 AC 20 ms
18,208 KB
testcase_21 AC 5 ms
8,964 KB
testcase_22 AC 12 ms
13,412 KB
testcase_23 AC 11 ms
12,656 KB
testcase_24 AC 12 ms
13,184 KB
testcase_25 AC 20 ms
19,844 KB
testcase_26 AC 13 ms
13,660 KB
testcase_27 AC 22 ms
20,696 KB
testcase_28 AC 17 ms
16,720 KB
testcase_29 AC 13 ms
13,572 KB
testcase_30 AC 5 ms
8,752 KB
testcase_31 AC 22 ms
20,828 KB
testcase_32 AC 12 ms
13,128 KB
testcase_33 AC 5 ms
8,648 KB
testcase_34 AC 11 ms
11,936 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define double long double
using ll = long long;
using VB = vector<bool>;
using VVB = vector<VB>;
using VVVB = vector<VVB>;
using VC = vector<char>;
using VVC = vector<VC>;
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using VVVVI = vector<VVVI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using VVVVL = vector<VVVL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
//using P = pair<int, int>;
#define REP(i, n) for (ll i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for (ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()
constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};
template< typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {return a < b && (a = b, true); }
template< typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {return a > b && (a = b, true); }
const ll MOD = 998244353;
const int MAX_N = 40;
int par[MAX_N];
int rnk[MAX_N];
int siz[MAX_N];
void init(int n) {
REP(i,n) {
par[i] = i;
rnk[i] = 0;
siz[i] = 1;
}
}
int find(int x) {
if (par[x] == x) {
return x;
} else {
return par[x] = find(par[x]);
}
}
void unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y) return;
int s = siz[x] + siz[y];
if (rnk[x] < rnk[y]) {
par[x] = y;
} else {
par[y] = x;
if (rnk[x] == rnk[y]) rnk[x]++;
}
siz[find(x)] = s;
}
bool same(int x, int y) {
return find(x) == find(y);
}
int size(int x) {
return siz[find(x)];
}
ll mod_pow(ll x, ll n, ll mod) {
ll res = 1;
x %= mod;
while (n > 0) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll gcd(ll x, ll y) {
if (y == 0) return x;
return gcd(y, x % y);
}
typedef pair<ll, int> P0;
struct edge { int to; ll cost; };
const int MAX_V = 100000;
//const ll LINF = 1LL<<60;
int V;
vector<edge> G[MAX_V];
ll d[MAX_V];
void dijkstra(ll s) {
priority_queue<P0, vector<P0>, greater<P0> > que;
fill(d, d + V, LINF);
d[s] = 0;
que.push(P0(0, s));
while (!que.empty()) {
P0 p = que.top(); que.pop();
int v = p.second;
if (d[v] < p.first) continue;
for (edge e : G[v]) {
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
que.push(P0(d[e.to], e.to));
}
}
}
}
/*
double EPS = 1e-10;
double add(double a, double b) {
if (abs(a + b) < EPS * (abs(a) + abs(b))) return 0;
return a + b;
}
struct P {
double x, y;
P() {}
P(double x, double y) : x(x), y(y) {
}
P operator + (P p) {
return P(add(x, p.x), add(y, p.y));
}
P operator - (P p) {
return P(add(x, -p.x), add(y, -p.y));
}
P operator * (double d) {
return P(x * d, y * d);
}
double dot(P p) {
return add(x * p.x, y * p.y);
}
double det(P p) {
return add(x * p.y, -y * p.x);
}
};
bool on_seg(P p1, P p2, P q) {
return ()
}
P intersection(P p1, P p2, P q1, P q2) {
return p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / (q2 - q1).det(p2 - p1));
}
*/
VL f(400010, 1);
ll C(ll n, ll k) {
return f[n] * mod_pow(f[k], MOD - 2, MOD) % MOD * mod_pow(f[n - k], MOD - 2, MOD) % MOD;
}
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
//REP(i, 400009) f[i + 1] = f[i] * (i + 1) % MOD;
int N, K, M1, M2, A, B;
cin >> N >> K >> M1;
VB C(N, false), D(N, false);
REP(i, M1) {
cin >> A;
D[A] = true;
}
cin >> M2;
REP(i, M2) {
cin >> B;
C[B] = true;
}
VVB dp(N + 1, VB(2, false));
dp[0][0] = true;
REP(i, N) {
if (dp[i][0]) {
if (D[i + 1]) dp[i + 1][1] = true;
else dp[i + 1][0] = true;
}
if (dp[i][1]) {
if (C[i + 1]) dp[i + 1][0] = true;
else dp[i + 1][1] = true;
}
if (i + K > N) continue;
if (dp[i][0]) {
if (D[i + K]) dp[i + K][1] = true;
else dp[i + K][0] = true;
}
if (dp[i][1]) {
if (C[i + K]) dp[i + K][0] = true;
else dp[i + K][1] = true;
}
}
if (dp[N][0]) cout << "Yes\n";
else cout << "No\n";
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0