結果

問題 No.2406 Difference of Coordinate Squared
ユーザー ecotteaecottea
提出日時 2023-08-04 22:48:05
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 44 ms / 2,000 ms
コード長 10,398 bytes
コンパイル時間 4,611 ms
コンパイル使用メモリ 269,104 KB
実行使用メモリ 11,136 KB
最終ジャッジ日時 2024-05-05 01:40:53
合計ジャッジ時間 6,035 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 27 ms
11,008 KB
testcase_02 AC 26 ms
11,136 KB
testcase_03 AC 44 ms
11,008 KB
testcase_04 AC 24 ms
11,136 KB
testcase_05 AC 11 ms
5,376 KB
testcase_06 AC 9 ms
6,784 KB
testcase_07 AC 10 ms
6,272 KB
testcase_08 AC 15 ms
8,448 KB
testcase_09 AC 15 ms
8,832 KB
testcase_10 AC 17 ms
10,496 KB
testcase_11 AC 24 ms
9,344 KB
testcase_12 AC 23 ms
9,856 KB
testcase_13 AC 17 ms
9,600 KB
testcase_14 AC 18 ms
10,112 KB
testcase_15 AC 19 ms
10,880 KB
testcase_16 AC 12 ms
7,808 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 7 ms
5,376 KB
testcase_19 AC 22 ms
10,112 KB
testcase_20 AC 14 ms
10,496 KB
testcase_21 AC 14 ms
7,424 KB
testcase_22 AC 15 ms
5,888 KB
testcase_23 AC 17 ms
10,880 KB
testcase_24 AC 5 ms
5,376 KB
testcase_25 AC 3 ms
5,376 KB
testcase_26 AC 1 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 2 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 2 ms
5,376 KB
testcase_32 AC 2 ms
5,376 KB
testcase_33 AC 2 ms
5,376 KB
testcase_34 AC 2 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 2 ms
5,376 KB
testcase_37 AC 2 ms
5,376 KB
testcase_38 AC 2 ms
5,376 KB
testcase_39 AC 2 ms
5,376 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
testcase_43 AC 2 ms
5,376 KB
testcase_44 AC 2 ms
5,376 KB
testcase_45 AC 1 ms
5,376 KB
testcase_46 AC 1 ms
5,376 KB
testcase_47 AC 2 ms
5,376 KB
testcase_48 AC 2 ms
5,376 KB
testcase_49 AC 1 ms
5,376 KB
testcase_50 AC 1 ms
5,376 KB
testcase_51 AC 1 ms
5,376 KB
testcase_52 AC 2 ms
5,376 KB
testcase_53 AC 1 ms
5,376 KB
testcase_54 AC 2 ms
5,376 KB
testcase_55 AC 2 ms
5,376 KB
testcase_56 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int N) : O(n)
*	N まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*/
class Factorial_mint {
	int n_max;

	// 階乗と階乗の逆数の値を保持するテーブル
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		Assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		Assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		Assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e

		Assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c

		Assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		Assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}
};


//【自由経路数】O(1)
/*
* (0, 0) から (x, y) まで n 回の移動で到達する格子路の数を返す.
*
* 制約:fm は n! まで計算可能
*/
mint count_free_lattice_path(int n, ll x, ll y, const Factorial_mint& fm) {
	// verify : https://atcoder.jp/contests/abc240/tasks/abc240_g

	//【方法】
	// x, y >= 0 とする.ローラン多項式の言葉に直すと,求める場合の数は
	//		[s^x t^y] (s + 1/s + t + 1/t)^n
	// である.以下明らかに 0 と分かる場合は無視する.
	//
	// 指数の底は因数分解できて,以下のように書き直せる:
	//		[s^x t^y] ( (s + t)^n (1 + 1/st)^n )
	// 
	// 第一因子からは s, t の次数の和が n の項しか作れないので,
	// 第二因子から作るべき項の次数の和は x + y - n である.
	// それが第 k 項だとすると,次数についての方程式
	//		0 * (n - k) + (-2) * k = x + y - n
	// を解いて
	//		k = (n - x - y) / 2
	// と分かり,その係数は二項定理より bin(n, (n-x-y)/2) である.
	//
	// 第二因子からは s, t の次数の差が 0 の項しか作れないので,
	// 第一因子から作るべき項の次数の差は x - y である.
	// それが第 k 項だとすると,次数についての方程式
	//		(n - k) - k = x - y
	// を解いて
	//		k = (n - x + y) / 2
	// と分かり,その係数は二項定理より bin(n, (n-x+y)/2) である.
	//
	// 以上より,求める場合の数は
	//		bin(n, (n-x-y)/2) bin(n, (n-x+y)/2)
	// である.

	//【別の方法】
	// 45°回転すれば,移動可能な箇所が x, y について独立(長方形状)になり,
	// 座標ごとに独立に問題をといて積をとるだけでよくなる.

	x = abs(x); y = abs(y);

	// 明らかに 0 通りの場合
	if (x + y > n || (n - x - y) % 2 == 1) return 0;

	return fm.bin(n, (n - x - y) / 2) * fm.bin(n, (n - x + y) / 2);
}


//【約数列挙】O(√n)
/*
* n の約数全てを昇順に格納したリストを返す.
*/
template <class T>
vector<T> divisors(T n) {
	// verify : https://yukicoder.me/problems/no/2142

	vector<T> ds;

	if (n == 1) {
		ds.push_back(1);
		return ds;
	}

	T i = 1;
	for (; i * i < n; i++) {
		if (n % i == 0) {
			ds.push_back(i);
			ds.push_back(n / i);
		}
	}
	if (i * i == n) ds.push_back(i);

	sort(all(ds));

	return ds;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n; ll m;
	cin >> n >> m;

	Factorial_mint fm(n);
	mint res = 0;

	if (m == 0) {
		repi(x, -n, n) {
			res += count_free_lattice_path(n, x, x, fm);
			res += count_free_lattice_path(n, x, -x, fm);
		}
		res -= count_free_lattice_path(n, 0, 0, fm);
		res /= mint(4).pow(n);

		cout << res << endl;

		return 0;
	}

	m = abs(m);

	auto ds = divisors(m);

	repe(d, ds) {
		ll e = m / d;
		if (d % 2 != e % 2) continue;

		ll x = (d + e) / 2;
		ll y = (d - e) / 2;

		res += 2 * count_free_lattice_path(n, x, y, fm);
	}
	res /= mint(4).pow(n);

	cout << res << endl;
}
0