結果
| 問題 |
No.2406 Difference of Coordinate Squared
|
| コンテスト | |
| ユーザー |
Focus_Sash
|
| 提出日時 | 2023-08-05 10:57:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 471 ms / 2,000 ms |
| コード長 | 4,762 bytes |
| コンパイル時間 | 2,015 ms |
| コンパイル使用メモリ | 207,372 KB |
| 最終ジャッジ日時 | 2025-02-15 23:31:06 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 55 |
ソースコード
#line 1 "b.cpp"
#include "bits/stdc++.h"
using namespace std;
namespace util {
using ll = long long;
using vl = std::vector<long long>;
using pl = std::pair<long long, long long>;
} // namespace util
using namespace util;
#include <atcoder/modint>
#line 1 "cp-library/binomial.hpp"
#include <cassert>
#include <vector>
template <typename T>
class Binomial {
private:
int size_, mod_;
std::vector<T> fact_, fact_inv_, inv_;
public:
explicit Binomial(int size) : size_(size), mod_(T::mod()) {
fact_.resize(size + 1);
fact_inv_.resize(size + 1);
inv_.resize(size + 1);
fact_[0] = fact_[1] = 1;
fact_inv_[0] = fact_inv_[1] = 1;
inv_[1] = 1;
for (int i = 2; i <= size; ++i) {
fact_[i] = fact_[i - 1] * i;
inv_[i] = T(mod_) - inv_[mod_ % i] * (mod_ / i);
fact_inv_[i] = fact_inv_[i - 1] * inv_[i];
}
}
T Calc(int n, int k) {
assert(n <= size_);
if (k < 0 || n < 0 || n < k) return 0;
if (k == 0) {
return 1;
}
return fact_[n] * fact_inv_[n - k] * fact_inv_[k];
}
T Factorial(int k) {
assert(k >= 0 && k <= size_);
return fact_[k];
}
T FactorialInv(int k) {
assert(k >= 0 && k <= size_);
return fact_inv_[k];
}
};
#line 2 "cp-library/cutils.hpp"
#include <cmath>
constexpr long long kMax = std::numeric_limits<long long>::max();
inline long long CountDigit(long long n, const long long base = 10) {
assert(n > 0);
assert(base > 1);
long long res = 0;
while (n) {
res++;
n /= base;
}
return res;
}
// verified
inline long long Pow(long long x, long long n) {
assert(n >= 0);
if (x == 0) return 0;
long long res = 1LL;
while (n > 0) {
if (n & 1) {
assert(x != 0 && std::abs(res) <= kMax / std::abs(x));
res = res * x;
}
if (n >>= 1) {
assert(x != 0 && std::abs(x) <= kMax / std::abs(x));
x = x * x;
}
}
return res;
}
// verified
inline long long Mod(long long n, const long long m) {
// returns the "arithmetic modulo"
// for a pair of integers (n, m) with m != 0, there exists a unique pair of
// integer (q, r) s.t. n = qm + r and 0 <= r < |m| returns this r
assert(m != 0);
if (m < 0) return Mod(n, -m);
if (n >= 0)
return n % m;
else
return (m + n % m) % m;
}
inline long long Quotient(long long n, long long m) {
// returns the "arithmetic quotient"
assert((n - Mod(n, m)) % m == 0);
return (n - Mod(n, m)) / m;
}
inline long long DivFloor(long long n, long long m) {
// returns floor(n / m)
assert(m != 0);
if (m < 0) {
n = -n;
m = -m;
}
if (n >= 0)
return n / m;
else if (n % m == 0)
return -(std::abs(n) / m);
else
return -(std::abs(n) / m) - 1;
}
inline long long DivCeil(long long n, long long m) {
// returns ceil(n / m)
assert(m != 0);
if (n % m == 0)
return DivFloor(n, m);
else
return DivFloor(n, m) + 1;
}
inline long long PowMod(long long x, long long n, const long long m) {
assert(n >= 0);
assert(m != 0);
if (x == 0) return 0;
long long res = 1;
x = Mod(x, m);
while (n > 0) {
if (n & 1) {
assert(x == 0 || std::abs(res) <= kMax / std::abs(x));
res = Mod(res * x, m);
}
if (n >>= 1) {
assert(x == 0 || std::abs(x) <= kMax / std::abs(x));
x = Mod(x * x, m);
}
}
return res;
}
long long SqrtFloor(long long n) {
// n -> floor(sqrt(n))
assert(n >= 0);
if (n == 0) return 0;
long long ok = 0;
long long ng = n + 1;
while (ng - ok > 1) {
long long mid = (ok + ng) / 2;
if (mid <= n / mid) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
long long SqrtCeil(long long n) {
// n -> ceil(sqrt(n))
assert(n >= 0);
if (n == 0) return 0;
long long ok = n;
long long ng = 0;
while (ok - ng > 1) {
long long mid = (ok + ng) / 2;
if (mid >= n / mid) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
#line 14 "b.cpp"
using namespace atcoder;
using mint = modint998244353;
#include <unordered_map>
void solve() {
ll n, m;
cin >> n >> m;
mint ans = 0;
unordered_map<ll, ll> sq;
for (ll i = 0; i <= n; ++i) {
sq[i * i] = i;
}
Binomial<mint> binom(n + 1);
for (ll y = -n; y <= n; ++y) {
if (m + y * y < 0) continue;
if (!sq.count(m + y * y)) continue;
ll x = sq[m + y * y];
if ((x + y + n) % 2) continue;
ans += binom.Calc(n, (x + y + n) / 2) * binom.Calc(n, (x - y + n) / 2);
if (x != 0) {
ans += binom.Calc(n, (-x + y + n) / 2) * binom.Calc(n, (-x - y + n) / 2);
}
}
ans *= mint(4).inv().pow(n);
cout << ans.val() << '\n';
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(15);
solve();
return 0;
}
Focus_Sash