結果
| 問題 |
No.2406 Difference of Coordinate Squared
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-08-05 14:02:41 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 526 ms / 2,000 ms |
| コード長 | 10,096 bytes |
| コンパイル時間 | 2,088 ms |
| コンパイル使用メモリ | 204,740 KB |
| 最終ジャッジ日時 | 2025-02-15 23:33:59 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 55 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define overload2(a, b, c, ...) c
#define overload3(a, b, c, d, ...) d
#define overload4(a, b, c, d, e ...) e
#define overload5(a, b, c, d, e, f ...) f
#define overload6(a, b, c, d, e, f, g ...) g
#define fast_io ios::sync_with_stdio(false); cin.tie(nullptr);
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
typedef long long ll;
typedef long double ld;
#define chmin(a,b) a = min(a,b);
#define chmax(a,b) a = max(a,b);
#define bit_count(x) __builtin_popcountll(x)
#define leading_zero_count(x) __builtin_clz(x)
#define trailing_zero_count(x) __builtin_ctz(x)
#define gcd(a,b) __gcd(a,b)
#define lcm(a,b) a / gcd(a,b) * b
#define rep(...) overload3(__VA_ARGS__, rrep, rep1)(__VA_ARGS__)
#define rep1(i,n) for(int i = 0 ; i < n ; i++)
#define rrep(i,a,b) for(int i = a ; i < b ; i++)
#define repi(it,S) for(auto it = S.begin() ; it != S.end() ; it++)
#define pt(a) cout << a << endl;
#define print(...) printall(__VA_ARGS__);
#define debug(a) cout << #a << " " << a << endl;
#define all(a) a.begin(), a.end()
#define endl "\n";
#define v1(T,n,a) vector<T>(n,a)
#define v2(T,n,m,a) vector<vector<T>>(n,v1(T,m,a))
#define v3(T,n,m,k,a) vector<vector<vector<T>>>(n,v2(T,m,k,a))
#define v4(T,n,m,k,l,a) vector<vector<vector<vector<T>>>>(n,v3(T,m,k,l,a))
template<typename T,typename U>istream &operator>>(istream&is,pair<T,U>&p){is>>p.first>>p.second;return is;}
template<typename T,typename U>ostream &operator<<(ostream&os,const pair<T,U>&p){os<<p.first<<" "<<p.second;return os;}
template<typename T>istream &operator>>(istream&is,vector<T>&v){for(T &in:v){is>>in;}return is;}
template<typename T>ostream &operator<<(ostream&os,const vector<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;}
template<typename T>istream &operator>>(istream&is,vector<vector<T>>&v){for(T &in:v){is>>in;}return is;}
template<typename T>ostream &operator<<(ostream&os,const vector<vector<T>>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?"\n":"");}return os;}
template<typename T>ostream &operator<<(ostream&os,const set<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;}
template<typename T>ostream &operator<<(ostream&os,const multiset<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;}
template<class... Args> void printall(Args... args){for(auto i:initializer_list<common_type_t<Args...>>{args...}) cout<<i<<" ";cout<<endl;}
const int mod = 998244353 ;
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
const int MAX_N = 3030303;
modint inv[MAX_N+1] ; // (n!)^(p-2) (mod p) を格納
modint fac[MAX_N+1] ; // (n!) (mod p) を格納
modint powmod(modint x , ll n){
modint res = 1 ;
while(n > 0){
if(n & 1) res *= x;
x *= x;
n >>= 1 ;
}
return res ;
}
// 階乗の逆元(n!)^(-1)のmodを配列に格納
void f(){
inv[0] = 1 ; inv[1] = 1 ;
for(ll i = 2 ; i <= MAX_N ; i++){
inv[i] = powmod(i,mod-2) * inv[i-1];
}
}
// 階乗のmodを配列に格納
void g(){
fac[0] = 1 ; fac[1] = 1 ;
for(ll i = 2 ; i <= MAX_N ; i++){
fac[i] = fac[i-1] * i;
}
}
//nCrの計算
modint combination(ll n , ll r){
if(n < 0 || r < 0 || n < r) return 0 ;
return fac[n] * inv[n-r] * inv[r];
}
modint permutation(ll n , ll r){
if(n < 0 || r < 0 || n < r) return 0 ;
return fac[n] * inv[n-r];
}
void init(){ f() ; g() ; }
struct NTT{
private:
int n , logn = 0;
modint BASE = 3 ;
vector<modint> vec , X , Y ;
vector<vector<modint>> ROOT , INV_ROOT ;
// ビルドする(畳み込み→逆変換)
void build(){
// 畳み込み
vector<modint> V = convolution(X,Y) ;
// 逆変換
vec = ifft(V) ;
}
// バタフライ演算を行うために配置を変換
inline void arrangeIndexForBatafly(vector<modint> &A , int logn){
for (int i = 0; i < n; i++) {
int j = 0;
for (int k = 0; k < logn; k++) j |= (i >> k & 1) << (logn - 1 - k);
if (i < j) swap(A[i], A[j]);
}
}
// FFT, IFFT のロジック
inline vector<modint> sub_fft(vector<modint> A , bool inverse){
// バタフライ演算
arrangeIndexForBatafly(A,logn) ;
int lg = 1 ;
for(int block = 1 ; block < n ; block *= 2){
// block内 の j 番目に対する処理
for(int j = 0 ; j < block ; j++){
// w , v : 重み
modint w = inverse ? ROOT[lg][j] : INV_ROOT[lg][j] ;
modint v = inverse ? ROOT[lg][j+block] : INV_ROOT[lg][j+block] ;
for(int i = 0 ; i < n ; i += 2 * block){
modint s = A[j+i] ;
modint t = A[j+i+block] ;
A[j + i] = s + t * w ;
A[j + i + block] = s + t * v ;
}
}
lg++ ;
}
if(inverse) for(int i = 0 ; i < n ; i++) A[i] /= n ;
return A ;
}
// 高速数論変換(NTT)
inline vector<modint> fft(vector<modint> A) { return sub_fft(A,false) ; }
// 逆高速数論変換(INTT)
inline vector<modint> ifft(vector<modint> A) { return sub_fft(A,true) ; }
// 畳み込み(Comvolution)を行う
inline vector<modint> convolution(vector<modint> A , vector<modint> B){
X = fft(A) , Y = fft(B) ;
vector<modint> V(n,0) ;
for(int i = 0 ; i < n ; i++) V[i] = X[i] * Y[i] ;
return V ;
}
public:
NTT(vector<modint> A , vector<modint> B){
BASE = BASE.pow(119) ;
int n1 = A.size() , n2 = B.size() , n_ = n1 + n2 - 1 ;
n = 1 ;
while(n < n_) n *= 2 , logn++ ;
X.resize(n,0) , Y.resize(n,0) ;
for(int i = 0 ; i < n1 ; i++) X[i] = A[i] ;
for(int i = 0 ; i < n2 ; i++) Y[i] = B[i] ;
rep(i,logn+1) {
vector<modint> pwr , ipwr ;
modint POW = BASE.pow(1<<(23-i)) ;
modint INV_POW = POW.inverse() ;
modint powval = 1 , inv_powval = 1 ;
rep(j,(1<<i)+1) {
pwr.push_back(powval) ;
powval *= POW ;
}
rep(j,(1<<i)+1) {
ipwr.push_back(inv_powval) ;
inv_powval *= INV_POW ;
}
ROOT.push_back(pwr) ;
INV_ROOT.push_back(ipwr) ;
}
build() ;
}
inline modint operator [] (int i) { return vec[i] ; }
size_t fft_size() { return n ; } // 2の冪乗が返ってくる
vector<modint> get_fft() { return vec ; }
};
ll n, m;
void solve(){
init();
cin >> n >> m;
m = abs(m);
if(m == 0){
if(n % 2) {
pt(0)
return;
}
modint res = 0;
rep(x,n+1) {
ll y = x;
ll diff = n - (x + y);
if(diff < 0) continue;
if((n+x-y)%2) continue;
if((n-x-y)%2) continue;
modint t = 4;
if(x == 0) t /= 2;
if(y == 0) t /= 2;
res += combination(n,(n+x-y)/2) * combination(n,(n-x-y)/2) * t;
}
pt(res/powmod(4,n))
return;
}
vector<ll> V;
for(ll x = 1; x * x <= m; x++){
if(m % x != 0) continue;
V.push_back(x);
}
modint res = 0;
for(ll b : V){
ll a = m / b;
if((a + b) % 2 != 0) continue;
ll x = (a + b) / 2;
ll y = (a - b) / 2;
x = abs(x);
y = abs(y);
if(x < y) swap(x,y);
ll diff = n - (x + y);
if(diff < 0) continue;
if((n+x-y)%2) continue;
if((n-x-y)%2) continue;
modint t = 4;
if(x == 0) t /= 2;
if(y == 0) t /= 2;
res += combination(n,(n+x-y)/2) * combination(n,(n-x-y)/2) * t;
}
pt(res / powmod(4,n))
}
int main(){
// fast_io
int t = 1;
// cin >> t;
rep(i,t) solve();
}