結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
puru
|
| 提出日時 | 2016-05-03 22:47:35 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 21 ms / 5,000 ms |
| コード長 | 4,375 bytes |
| コンパイル時間 | 1,436 ms |
| コンパイル使用メモリ | 171,008 KB |
| 実行使用メモリ | 7,052 KB |
| 最終ジャッジ日時 | 2024-10-05 06:02:55 |
| 合計ジャッジ時間 | 2,519 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define all(c) ((c).begin()), ((c).end())
#define dump(c) cerr << "> " << #c << " = " << (c) << endl;
#define iter(c) __typeof((c).begin())
#define tr(i, c) for (iter(c) i = (c).begin(); i != (c).end(); i++)
#define REP(i, a, b) for (int i = a; i < (int)(b); i++)
#define rep(i, n) REP(i, 0, n)
#define mp make_pair
#define fst first
#define snd second
#define pb push_back
#define debug(fmt, ...) \
fprintf( stderr, \
fmt "\n", \
##__VA_ARGS__ \
)
typedef unsigned int uint;
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<vi> vvi;
typedef vector<double> vd;
typedef vector<vd> vvd;
typedef vector<string> vs;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1 << 29;
const double EPS = 1e-10;
double zero(double d) {
return d < EPS ? 0.0 : d;
}
template<class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template<class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return true;
}
return false;
}
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
template<typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
return os << '(' << p.first << ',' << p.second << ')';
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &a) {
os << '[';
rep(i, a.size()) os << (i ? " " : "") << a[i];
return os << ']';
}
string toString(int i) {
stringstream ss;
ss << i;
return ss.str();
}
const int MOD = 1000000007;
// a^k
ll fpow(ll a, ll k, int M) {
ll res = 1ll;
ll x = a;
while (k != 0) {
if ((k & 1) == 1)
res = (res * x) % M;
x = (x * x) % M;
k >>= 1;
}
return res;
}
struct prepare {
prepare() {
cout.setf(ios::fixed, ios::floatfield);
cout.precision(8);
ios_base::sync_with_stdio(false);
}
} _prepare;
vvi mul(vvi &mat, vvi &mat2, int M) {
int H = mat.size(), W = mat[0].size();
vvi ans(H, vi(W, 0));
rep(r, H) {
rep(c, W) {
rep(i, W) {
ans[r][c] += ((ll) mat[r][i] * mat2[i][c]) % M;
ans[r][c] %= M;
}
}
}
return ans;
}
vi mul(vvi &mat, vi &vec, int M) {
int H = mat.size(), W = mat[0].size();
vi ans(W, 0);
rep(r, H) {
rep(c, W) {
ans[r] += ((ll) mat[r][c] * vec[c]) % M;
ans[r] %= M;
}
}
return ans;
}
// a^k
vvi fpow(vvi a, ll k, int M) {
vvi res(a.size(), vi(a[0].size(), 0));
rep(i, a.size())
res[i][i] = 1;
vvi x = a;
while (k != 0) {
if ((k & 1) == 1)
res = mul(res, x, M);
x = mul(x, x, M);
k >>= 1;
}
return res;
}
int main() {
ll N, K;
cin >> N >> K;
// case 1
if (K <= (int) (1e6) + 100) {
vi dp(K, 0);
ll sum = 0;
rep(i, N) {
cin >> dp[i];
sum += dp[i];
sum %= MOD;
}
dp[N] = sum;
ll total = sum + sum;
total %= MOD;
REP(i, N + 1, K) {
sum = ((ll)sum - dp[i - N - 1] + MOD) % MOD;
sum = ((ll)sum + dp[i - 1]) % MOD;
dp[i] = sum;
total += dp[i];
total %= MOD;
}
cout << dp[K - 1] << " " << total << endl;
}
// case 2
else {
vi nums(N + 1);
int t = 0;
rep(i, N) {
cin >> nums[i];
t += nums[i];
}
nums[N] = t;
vvi mat(N + 1, vi(N + 1, 0));
rep(c, N)
mat[0][c] = 1;
REP(r, 1, N) {
rep(c, N)
mat[r][c] = mat[r - 1][c] * 2;
mat[r][r - 1]--;
}
rep(c, N)
rep(r, N)
mat[N][c] += mat[r][c];
mat[N][N] = 1;
vvi muled = fpow(mat, (K-1) / N, MOD);
vi ans = mul(muled, nums, MOD);
int pos = ((K-1) % N);
cout << ans[(pos + N) % N] << " ";
ll total = ans[N];
REP(i, pos+1, N)
total = (total - ans[i] + MOD) % MOD;
cout << total << endl;
}
return 0;
}
puru