結果
| 問題 |
No.2443 特殊線形群の標準表現
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-08-06 10:20:09 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,975 bytes |
| コンパイル時間 | 2,628 ms |
| コンパイル使用メモリ | 223,564 KB |
| 最終ジャッジ日時 | 2025-02-15 23:43:33 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 7 WA * 14 |
ソースコード
// 誤解法(積の順序を無視したセグ木解O(N + Q log N))チェック
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( MESSAGE ) cerr << MESSAGE << endl;
#define COUT( ANSWER ) cout << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( MESSAGE )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define MAIN main
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
#endif
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
// 2^16 = 65536
// 2^17 = 131072
// 2^18 = 262144
template <int N>
class PowerCalculation
{
public:
int m_val;
inline constexpr PowerCalculation();
};
template <int N> inline constexpr PowerCalculation<N>::PowerCalculation() : m_val( 1 ) { while( m_val < N ){ m_val <<= 1; } }
#define TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE typename T , T m_T(const T&,const T&) , const T& e_T() , int N
// (可換とは限らない)モノイド(T,m_T:T^2->T,e_T:1->T)と非負整数Nをパラメータとする。
// 単位元による初期化O(N)
// 配列による初期化O(N)
// 一点取得O(1)
// 区間積取得O(log_2 N)
// 一点更新O((log_2 N)^2)
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE>
class SegmentTree
{
private:
static constexpr const int g_power = PowerCalculation<N>{}.m_val;
static constexpr const int g_power2 = g_power << 1;
T m_a[g_power2];
public:
static const T& g_e;
inline SegmentTree();
inline SegmentTree( const T ( &a )[N] );
inline const T& operator[]( const int& i ) const;
inline const T& Get( const int& i ) const;
T IntervalProduct( const int& i_start , const int& i_final );
void Set( const int& i , const T& n );
};
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE> inline const T& SegmentTree<T,m_T,e_T,N>::g_e = e_T();
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE> inline SegmentTree<T,m_T,e_T,N>::SegmentTree() : m_a() { if( m_a[0] != g_e ){ for( int j = 1 ; j < g_power2 ; j++ ){ m_a[j] = g_e; } } }
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE> inline SegmentTree<T,m_T,e_T,N>::SegmentTree( const T ( &a )[N] ) : m_a()
{
int j_ulim = g_power + N;
if( m_a[0] != g_e ){
for( int j = g_power2 - 1 ; j >= j_ulim ; j-- ){
m_a[j] = g_e;
}
}
for( int i = 0 ; i < N ; i++ ){
m_a[i | g_power] = a[i];
}
for( int j = g_power - 1 ; j >= 1 ; j-- ){
int j2 = j << 1;
m_a[j] = m_T( m_a[j2] , m_a[j2+1] );
}
}
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE> inline const T& SegmentTree<T,m_T,e_T,N>::operator[]( const int& i ) const { return m_a[g_power + i]; }
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE> inline const T& SegmentTree<T,m_T,e_T,N>::Get( const int& i ) const { return m_a[g_power + i]; }
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE>
T SegmentTree<T,m_T,e_T,N>::IntervalProduct( const int& i_start , const int& i_final )
{
int j_min = i_start < 0 ? g_power : g_power + i_start;
int j_ulim = i_final < N ? g_power + i_final + 1 : g_power + N;
T answer0 = g_e;
T answer1 = g_e;
while( j_min < j_ulim ){
( j_min & 1 ) == 1 ? answer0 = m_T( answer0 , m_a[j_min++] ) : answer0;
( j_ulim & 1 ) == 1 ? answer1 = m_T( m_a[--j_ulim] , answer1 ) : answer1;
j_min >>= 1;
j_ulim >>= 1;
}
return m_T( answer0 , answer1 );
}
template <TEMPLATE_ARGUMENTS_FOR_SEGMENT_TREE>
void SegmentTree<T,m_T,e_T,N>::Set( const int& i , const T& n )
{
int j = g_power + i;
m_a[j] = n;
while( ( j <<= 1 ) >= 1 ){
int j2 = j << 1;
m_a[j] = m_T( m_a[j2] , m_a[j2+1] );
}
return;
}
#define OO first.first
#define OI first.second
#define IO second.first
#define II second.second
ll B;
using Matrix = pair<pair<ll,ll>,pair<ll,ll> >;
inline Matrix m( const Matrix& M , const Matrix& N )
{
return
{
{ ( M.OO * N.OO + M.OI * N.IO ) % B , ( M.OO * N.OI + M.OI * N.II ) % B } ,
{ ( M.IO * N.OO + M.II * N.IO ) % B , ( M.IO * N.OI + M.II * N.II ) % B }
};
}
inline const Matrix& e() { static const Matrix one{ { 1 , 0 } , { 0 , 1 } }; return one; }
int MAIN()
{
UNTIE;
DEXPR( int , bound_N , 100000 , 100 ); // 0が5個
CIN_ASSERT( N , 1 , bound_N );
CEXPR( ll , bound_ABx , 1000000000 ); // 0が9個
SET_ASSERT( B , 1 , bound_ABx );
DEXPR( int , bound_Q , 100000 , 100 ); // 0が5個
CIN_ASSERT( Q , 1 , bound_Q );
Matrix temp{ { 1 , 0 } , { 0 , 1 } };
Matrix A[bound_N + 1] = { temp };
FOREQ( n , 1 , N ){
CIN_ASSERT( AOO , -bound_ABx , bound_ABx );
CIN_ASSERT( AOI , -bound_ABx , bound_ABx );
CIN_ASSERT( AIO , -bound_ABx , bound_ABx );
CIN_ASSERT( AII , -bound_ABx , bound_ABx );
assert( AOO * AII - AOI * AIO == 1 );
A[n] = { { AOO , AOI } , { AIO , AII } };
}
SegmentTree<Matrix,m,e,bound_N+1> st{ A };
REPEAT( Q ){
CIN_ASSERT( Lq , 0 , N );
CIN_ASSERT( Rq , Lq , N );
CIN_ASSERT( x , -bound_ABx , bound_ABx );
CIN_ASSERT( y , -bound_ABx , bound_ABx );
Matrix prod = st.IntervalProduct( Lq + 1 , Rq );
ll z = Residue( prod.OO * x + prod.OI * y , B );
ll w = Residue( prod.IO * x + prod.II * y , B );
COUT( z << " " << w );
}
QUIT;
}