結果
問題 | No.2406 Difference of Coordinate Squared |
ユーザー |
|
提出日時 | 2023-08-07 03:40:01 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 6,441 bytes |
コンパイル時間 | 11,378 ms |
コンパイル使用メモリ | 377,552 KB |
実行使用メモリ | 17,744 KB |
最終ジャッジ日時 | 2024-11-26 18:12:05 |
合計ジャッジ時間 | 13,656 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 55 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rsfn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {let mut fac = vec![MInt::new(1); w];let mut invfac = vec![0.into(); w];for i in 1..w {fac[i] = fac[i - 1] * i as i64;}invfac[w - 1] = fac[w - 1].inv();for i in (0..w - 1).rev() {invfac[i] = invfac[i + 1] * (i as i64 + 1);}(fac, invfac)}fn calc(n: i64, a: i64, fac: &[MInt], invfac: &[MInt]) -> MInt {if a.abs() > n || (n + a) % 2 != 0 {return 0.into();}let n = n as usize;let a = a.abs() as usize;fac[n] * invfac[(n + a) / 2] * invfac[(n - a) / 2]}// https://yukicoder.me/problems/no/2406 (3.5)// a = x + y, b = x - y とすると、操作では a や b が**独立に** 1 増えたり減ったりする。// x^2 - y^2 = ab = M となる a, b それぞれに対して確率を求めれば良い。// その確率は f(a, N)f(b, N) である。// ここで f(s, N) = |s| <= N && (s + N) % 2 == 0 ? C(N, (N-s)/2)/2^N : 0 である。// -> WA。 M = 0 のときの a, b の列挙に問題があった。0 の約数列挙を行うことはできない。fn main() {let n: i64 = get();let m: i64 = get();let (fac, invfac) = fact_init(n as usize + 1);let p2 = MInt::new(2).inv().pow(n as i64);if m == 0 {let mut ans = MInt::new(0);let tmp = calc(n, 0, &fac, &invfac) * p2;ans += tmp * 2 - tmp * tmp;println!("{}", ans);return;}let mut pairs = vec![];for d in 1..1_000_001 {if m % d == 0 {pairs.push((d, m / d));pairs.push((m / d, d));pairs.push((-d, -m / d));pairs.push((-m / d, -d));}}pairs.sort(); pairs.dedup();let mut ans = MInt::new(0);for (a, b) in pairs {ans += calc(n, a, &fac, &invfac) * calc(n, b, &fac, &invfac) * p2 * p2;}println!("{}", ans);}