結果
問題 | No.2012 Largest Triangle |
ユーザー | vwxyz |
提出日時 | 2023-08-08 22:08:36 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 27,166 bytes |
コンパイル時間 | 151 ms |
コンパイル使用メモリ | 82,516 KB |
実行使用メモリ | 132,556 KB |
最終ジャッジ日時 | 2024-11-14 02:46:08 |
合計ジャッジ時間 | 55,360 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 68 ms
72,808 KB |
testcase_01 | AC | 69 ms
73,544 KB |
testcase_02 | AC | 68 ms
73,276 KB |
testcase_03 | AC | 68 ms
72,752 KB |
testcase_04 | AC | 69 ms
72,880 KB |
testcase_05 | AC | 67 ms
73,024 KB |
testcase_06 | AC | 69 ms
72,676 KB |
testcase_07 | AC | 67 ms
74,020 KB |
testcase_08 | AC | 71 ms
73,820 KB |
testcase_09 | AC | 69 ms
73,100 KB |
testcase_10 | AC | 68 ms
73,892 KB |
testcase_11 | AC | 71 ms
73,404 KB |
testcase_12 | AC | 69 ms
73,536 KB |
testcase_13 | AC | 70 ms
73,412 KB |
testcase_14 | AC | 69 ms
73,748 KB |
testcase_15 | AC | 71 ms
73,532 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | AC | 98 ms
78,348 KB |
testcase_37 | AC | 96 ms
78,696 KB |
testcase_38 | AC | 97 ms
78,720 KB |
testcase_39 | AC | 99 ms
78,364 KB |
testcase_40 | AC | 98 ms
78,372 KB |
testcase_41 | AC | 352 ms
92,096 KB |
ソースコード
import sys readline=sys.stdin.readline from collections import deque # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Optional, List T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class Convex_Hull_Trick: def __init__(self,avl=False): self.avl=avl if self.avl: self.lines=AVLTree_dict() else: self.lines_A=SortedSet() self.lines_B={} def is_removed(self,line0,line1,line2): if line0==None: return False if line2==None: return False a0,b0=line0 a1,b1=line1 a2,b2=line2 return (a1-a0)*(b2-b1)<=(b1-b0)*(a2-a1) def add_line(self,a,b): if self.avl: bb=self.lines[a] else: if a in self.lines_B: bb=self.lines_B[a] else: bb=None if bb!=None and bb<=b: return if self.avl: line0=self.lines.Bisect_Left(a) else: aa=self.lines_A.lt(a) if aa==None: line0=None else: line0=(aa,self.lines_B[aa]) line1=(a,b) if self.avl: line2=self.lines.Bisect_Right(a) else: aa=self.lines_A.gt(a) if aa==None: line2=None else: line2=(aa,self.lines_B[aa]) if self.is_removed(line0,line1,line2): return if self.avl: self.lines[a]=b else: self.lines_A.add(a) self.lines_B[a]=b line2=(a,b) if self.avl: line1=self.lines.Bisect_Left(line2[0]) line0=None if line1==None else self.lines.Bisect_Left(line1[0]) else: aa=self.lines_A.lt(line2[0]) if aa==None: line1=None else: line1=(aa,self.lines_B[aa]) if line1==None: line0=None else: aa=self.lines_A.lt(line1[0]) if aa==None: line0=None else: line0=(aa,self.lines_B[aa]) while self.is_removed(line0,line1,line2): if self.avl: del self.lines[line1[0]] else: assert self.lines_A.discard(line1[0]) del self.lines_B[line1[0]] line1=line0 if self.avl: line0=None if line1==None else self.lines.Bisect_Left(line1[0]) else: aa=self.lines_A.lt(line1[0]) if aa==None: line0=None else: line0=(aa,self.lines_B[aa]) line0=(a,b) if self.avl: line1=self.lines.Bisect_Right(line0[0]) line2=None if line1==None else self.lines.Bisect_Right(line1[0]) else: aa=self.lines_A.gt(line0[0]) if aa==None: line1=None else: line1=(aa,self.lines_B[aa]) if line1==None: line2=None else: aa=self.lines_A.gt(line1[0]) if aa==None: line2=None else: line2=(aa,self.lines_B[aa]) while self.is_removed(line0,line1,line2): if self.avl: del self.lines[line1[0]] else: assert self.lines_A.discard(line1[0]) del self.lines_B[line1[0]] line1=line2 if self.avl: line2=None if line1==None else self.lines.Bisect_Right(line1[0]) else: aa=self.lines_A.gt(line1[0]) if aa==None: line2=None else: line2=(aa,self.lines_B[aa]) def __call__(self,x,y): if self.avl: size=len(self.lines) else: size=len(self.lines_A) if not size: return None ok,ng=-1,size-1 while ng-ok>1: mid=(ok+ng)//2 if self.avl: a0,b0=self.lines.Find_Kth_Element(mid) a1,b1=self.lines.Find_Kth_Element(mid+1) else: a0=self.lines_A[mid] b0=self.lines_B[a0] a1=self.lines_A[mid+1] b1=self.lines_B[a1] if a0*x+b0*y>a1*x+b1*y: ok=mid else: ng=mid if self.avl: a,b=self.lines.Find_Kth_Element(ok+1) else: a=self.lines_A[ok+1] b=self.lines_B[a] return a*x+b*y def __getitem__(self,a): if self.avl: return self.lines[a] else: if a in self.lines_A: return self.lines_B[a] else: return None def __setitem__(self,a,b): self.add_line(a,b) class Cumsum: def __init__(self,lst,mod=0): self.N=len(lst) self.mod=mod self.cumsum=[0]*(self.N+1) self.cumsum[0]=0 for i in range(1,self.N+1): self.cumsum[i]=self.cumsum[i-1]+lst[i-1] if self.mod: self.cumsum[i]%=self.mod def __getitem__(self,i): if type(i)==int: if 0<=i<self.N: a,b=i,i+1 elif -self.N<=i<0: a,b=i+self.N,i+self.N+1 else: raise IndexError('list index out of range') else: a,b=i.start,i.stop if a==None or a<-self.N: a=0 elif self.N<=a: a=self.N elif a<0: a+=self.N if b==None or self.N<=b: b=self.N elif b<-self.N: b=0 elif b<0: b+=self.N s=self.cumsum[b]-self.cumsum[a] if self.mod: s%=self.mod return s def __setitem__(self,i,x): if -self.N<=i<0: i+=self.N elif not 0<=i<self.N: raise IndexError('list index out of range') self.cumsum[i+1]=self.cumsum[i]+x if self.mod: self.cumsum[i+1]%=self.mod def __len__(self): return self.N def __str__(self): lst=[self.cumsum[i+1]-self.cumsum[i] for i in range(self.N)] if self.mod: for i in range(self.N): lst[i]%=self.mod return "["+", ".join(map(str,lst))+"]" class AVL_Node_dict: """ノード Attributes: key (any): ノードのキー。比較可能なものであれば良い。(1, 4)などタプルも可。 val (any): ノードの値。 left (Node): 左の子ノード。 right (Node): 右の子ノード。 bias (int): 平衡度。(左部分木の高さ)-(右部分木の高さ)。 size (int): 自分を根とする部分木の大きさ """ def __init__(self,parent,key,value): self.parent=parent self.key=key self.value=value self.left=None self.right=None self.bias=0 self.size=1 class AVLTree_dict: def __init__(self): self.root=None def Rotate_Left(self,node): node_right=node.right node_right.size=node.size node.size-=1 if node_right.right!=None: node.size-=node_right.right.size if node_right.bias==-1: node_right.bias=0 node.bias=0 else: #assert node_right.bias==0 node_right.bias=1 node.bias=-1 node.right=node_right.left node_right.left=node return node_right def Rotate_Right(self,node): node_left=node.left node_left.size=node.size node.size-=1 if node_left.left!=None: node.size-=node_left.left.size if node_left.bias==1: node_left.bias=0 node.bias=0 else: #assert node_left.bias==0 node_left.bias=-1 node.bias=1 node.left=node_left.right node_left.right=node return node_left def Rotate_Left_Right(self,node): node_left=node.left node_left_right=node_left.right #assert node.bias==2 #assert node_left.bias==-1 #assert node_left_right.bias in (-1,0,1) node_left_right.size=node.size node.size-=node_left.size if node_left_right.right!=None: node.size+=node_left_right.right.size node_left.size-=1 if node_left_right.right!=None: node_left.size-=node_left_right.right.size node_left.right=node_left_right.left node_left_right.left=node_left node.left=node_left_right.right node_left_right.right=node self.Update_Bias_Double(node_left_right) return node_left_right def Rotate_Right_Left(self,node): node_right=node.right node_right_left=node_right.left #assert node.bias==-2 #assert node_right.bias==1 #assert node_right_left.bias in (-1,0,1) node_right_left.size=node.size node.size-=node_right.size if node_right_left.left!=None: node.size+=node_right_left.left.size node_right.size-=1 if node_right_left.left!=None: node_right.size-=node_right_left.left.size node_right.left=node_right_left.right node_right_left.right=node_right node.right=node_right_left.left node_right_left.left=node self.Update_Bias_Double(node_right_left) return node_right_left def Update_Bias_Double(self,node): #assert node.right.bias*node.left.bias==-2 #assert node.right.bias>0 if node.bias==1: node.right.bias=-1 node.left.bias=0 elif node.bias==-1: node.right.bias=0 node.left.bias=1 else: node.right.bias=0 node.left.bias=0 node.bias=0 def __getitem__(self,key): v=self.root while v!=None: if key<v.key: v=v.left elif v.key<key: v=v.right else: return v.value return None def __setitem__(self,key,value): if self.root==None: self.root=AVL_Node_dict(None,key,value) return v=self.root stack=[] while v!=None: if key<v.key: stack.append((v,1)) v=v.left elif v.key<key: stack.append((v,-1)) v=v.right elif v.key==key: v.value=value return p,direction=stack[-1] if direction==1: p.left=AVL_Node_dict(p,key,value) else: p.right=AVL_Node_dict(p,key,value) while stack: v,direction=stack.pop() v.bias+=direction v.size+=1 vv=None if v.bias==2: if v.left.bias==-1: vv=self.Rotate_Left_Right(v) else: vv=self.Rotate_Right(v) #assert vv!=None break if v.bias==-2: if v.right.bias==1: vv=self.Rotate_Right_Left(v) else: vv=self.Rotate_Left(v) #assert vv!=None break if v.bias==0: break if vv!=None: if len(stack)==0: self.root=vv return p,direction=stack.pop() p.size+=1 if direction==1: p.left=vv else: p.right=vv while stack: p,direction=stack.pop() p.size+=1 def __delitem__(self,key): v=self.root stack=[] while v!=None: if key<v.key: stack.append((v,1)) v=v.left elif v.key<key: stack.append((v,-1)) v=v.right else: break else: return False if v.left!=None: stack.append((v,1)) lmax=v.left while lmax.right!=None: stack.append((lmax,-1)) lmax=lmax.right v.key=lmax.key v.value=lmax.value v=lmax c=v.right if v.left==None else v.left if stack: p,direction=stack[-1] if direction==1: p.left=c else: p.right=c else: self.root=c return True while stack: pp=None p,direction=stack.pop() p.bias-=direction p.size-=1 if p.bias==2: if p.left.bias==-1: pp=self.Rotate_Left_Right(p) else: pp=self.Rotate_Right(p) elif p.bias==-2: if p.right.bias==1: pp=self.Rotate_Right_Left(p) else: pp=self.Rotate_Left(p) elif p.bias!=0: break if pp!=None: if len(stack)==0: self.root=pp return True p,direction=stack[-1] if direction==1: p.left=pp else: p.right=pp if pp.bias!=0: break while stack: p,direction=stack.pop() p.size-=1 return True def __contains__(self,key): v=self.root while v!=None: if key<v.key: v=v.left elif v.key<key: v=v.right else: return True return False def Bisect_Right(self,key): retu=None v=self.root while v!=None: if v.key>key: if retu==None or retu[0]>v.key: retu=(v.key,v.value) v=v.left else: v=v.right return retu def Bisect_Left(self,key): retu=None v=self.root while v!=None: if v.key<key: if retu==None or retu[0]<v.key: retu=(v.key,v.value) v=v.right else: v=v.left return retu def Find_Kth_Element(self,K): v=self.root s=0 while v!=None: t=s+v.left.size if v.left!=None else s if t==K: return v.key,v.value elif t<K: s=t+1 v=v.right else: v=v.left return None def keys(self): stack=[(self.root,True)] while stack: node,subtree=stack.pop() if subtree: if node.right!=None: stack.append((node.right,True)) stack.append((node,False)) if node.left!=None: stack.append((node.left,True)) else: yield node.key def values(self): stack=[(self.root,True)] while stack: node,subtree=stack.pop() if subtree: if node.right!=None: stack.append((node.right,True)) stack.append((node,False)) if node.left!=None: stack.append((node.left,True)) else: yield node.value def items(self): stack=[(self.root,True)] while stack: node,subtree=stack.pop() if subtree: if node.right!=None: stack.append((node.right,True)) stack.append((node,False)) if node.left!=None: stack.append((node.left,True)) else: yield (node.key,node.value) def __bool__(self): return self.root!=None def __len__(self): return 0 if self.root==None else self.root.size def __iter__(self): return iter(self.keys()) def __str__(self): if self.root==None: retu="{}" else: retu="{"+", ".join(f"{r}: {m}" for r,m in self.items())+"}" return retu class Convex_Hull_Trick_deque: """ f_i = a_ix + b_i とする。f_i の追加および、min_i f(x) の取得ができるデータ構造。 ただし、傾き a_i は降順に追加されなければならない。 また、クエリ x も昇順に実行されなければならない。 """ def __init__(self): self.lines=deque() def add_line(self,a,b): lines=self.lines while len(lines) >= 2: a1,b1=lines[-2] a2,b2=lines[-1] if (a2-a1)*(b-b2)<(b2-b1)*(a-a2): break lines.pop() lines.append((a, b)) def __call__(self, x,y): lines=self.lines a,b=lines[0] z=a*x+b*y while len(lines) >= 2: a2, b2 = lines[1] z2 = a2 * x + b2*y if z < z2: break z = z2 lines.popleft() return z N=int(readline()) X,Y=[],[] CHT=Convex_Hull_Trick_deque() for n in range(N): x,y=map(int,readline().split()) X.append(x) Y.append(y) for y,x in sorted([(-Y[i],X[i]) for i in range(N)]+[(Y[i],-X[i]) for i in range(N)],reverse=True): CHT.add_line(y,x) ans=max(-CHT(x,y) for x,y in sorted([(X[i],Y[i]) for i in range(N)]+[(-X[i],-Y[i]) for i in range(N)])) print(ans)