結果
| 問題 | 
                            No.2443 特殊線形群の標準表現
                             | 
                    
| コンテスト | |
| ユーザー | 
                             MasKoaTS
                         | 
                    
| 提出日時 | 2023-08-09 23:30:47 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 758 ms / 3,000 ms | 
| コード長 | 1,523 bytes | 
| コンパイル時間 | 257 ms | 
| コンパイル使用メモリ | 82,280 KB | 
| 実行使用メモリ | 159,176 KB | 
| 最終ジャッジ日時 | 2024-11-15 21:55:05 | 
| 合計ジャッジ時間 | 8,883 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 21 | 
ソースコード
import itertools as iter
import collections as coll
import heapq as hq
import bisect as bis
from decimal import Decimal as dec
from functools import cmp_to_key
import math
import sys
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
sys.setrecursionlimit(10 ** 6)
inp = sys.stdin.readline
input = lambda : inp()[:-1]
getN = lambda : int(inp())
getNs = lambda : map(int, inp().split())
getList = lambda :list(map(int, inp().split()))
getStrs = lambda n : [input() for _ in [0] * n]
def yexit(): print("Yes"); exit(0)
def nexit(): print("No"); exit(0)
pi = 3.141592653589793
mod = 1000000007
MOD = 998244353
INF = 4611686018427387903
dx = [1, 0, -1, 0];  dy = [0, 1, 0, -1]
#di = coll.defaultdict(int)
 
 
"""
Main Code
"""
n, b, q = getNs()
As = [[getList() for _ in [0] * 2] for _ in [0] * n]
query = [getList() for _ in [0] * q]
def prod(A, B):
    ret = [[0, 0], [0, 0]]
    for i in range(2):
        for j in range(2):
            for k in range(2):
                ret[i][j] += A[i][k] * B[k][j]
                ret[i][j] %= b
    return ret
A_prod = [[1, 0], [0, 1]]
Bs = [A_prod]
for A in As:
    A_prod = prod(A, A_prod)
    Bs.append(A_prod)
def inverse(A):
    return [[A[1][1], -A[0][1]], [-A[1][0], A[0][0]]]
def prod_vector(A, vec):
    ret = [0, 0]
    for i in range(2):
        for j in range(2):
            ret[i] += A[i][j] * vec[j]
            ret[i] %= b
    return ret
for l, r, x, y in query:
    vec = [x, y]
    ans = prod_vector(prod(Bs[r], inverse(Bs[l])), vec)
    print(*ans)
            
            
            
        
            
MasKoaTS