結果
問題 | No.346 チワワ数え上げ問題 |
ユーザー |
![]() |
提出日時 | 2023-08-10 14:48:42 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 8,783 bytes |
コンパイル時間 | 10,365 ms |
コンパイル使用メモリ | 288,416 KB |
最終ジャッジ日時 | 2025-02-16 00:31:05 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
#pragma GCC target("avx2")#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#include <bits/stdc++.h>#include <cstdlib>//#include <atcoder/all>//using namespace atcoder;#include <chrono>#define int long long#define double long double#define stoi stoll//#define endl "\n"using std::abs;using namespace std;constexpr double PI = 3.14159265358979323846;const int INF = 1LL << 61;const int dx[8] = { 0,1,0,-1,1,1,-1,-1 };const int dy[8] = { 1,0,-1,0,1,-1,1,-1 };#define rep(i,n) for(int i=0;i<n;++i)#define REP(i,n) for(int i=1;i<=n;i++)#define sREP(i,n) for(int i=1;i*i<=n;++i)#define krep(i,k,n) for(int i=(k);i<n+k;i++)#define Krep(i,k,n) for(int i=(k);i<n;i++)#define rrep(i,n) for(int i=n-1;i>=0;i--)#define Rrep(i,n) for(int i=n;i>0;i--)#define frep(i,n) for(auto &x:n)#define LAST(x) x[x.size()-1]#define ALL(x) (x).begin(),(x).end()#define MAX(x) *max_element(ALL(x))#define MIN(x) *min_element(ALL(x)#define RUD(a,b) (((a)+(b)-1)/(b))#define sum1_n(n) ((n)*(n+1)/2)#define SUM1n2(n) (n*(2*n+1)*(n+1))/6#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))#define SZ(x) ((int)(x).size())#define PB push_back#define Fi first#define Se second#define lower(vec, i) *lower_bound(ALL(vec), i)#define upper(vec, i) *upper_bound(ALL(vec), i)#define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin())#define acc(vec) accumulate(ALL(vec),0LL)template<class... T>constexpr auto min(T... a) {return min(initializer_list<common_type_t<T...>>{a...});}template<class... T>constexpr auto max(T... a) {return max(initializer_list<common_type_t<T...>>{a...});}template<class... T>void in(T&... a) {(cin >> ... >> a);}void out() { cout << "\n"; }template <typename T, class... U, char sep = ' '>void out(const T& t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;out(u...);}template <typename T>bool nxp(vector<T>& v) {return next_permutation(begin(v), end(v));}#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)template <class T>using v = vector<T>;template <class T>using vv = vector<v<T>>;template <class T>using vvv = vector<vv<T>>;using pint = pair<int, int>;using tint = tuple<int, int, int>;using qint = tuple<int, int, int, int>;double LOG(int a, int b) {return log(b) / log(a);}int DISTANCE(pint a, pint b) {return (abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second));}inline bool BETWEEN(int x, int min, int max) {if (min <= x && x <= max)return true;elsereturn false;}inline bool between(int x, int min, int max) {if (min < x && x < max) return true;else return false;}inline bool BETWEEN2(int i, int j, int H, int W) {if (BETWEEN(i, 0, H - 1) && BETWEEN(j, 0, W - 1)) return true;else return false;}template<class T>inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T>inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}inline bool bit(int x, int i) {return x >> i & 1;}void yn(bool x) {if (x) {cout << "Yes" << endl;}else {cout << "No" << endl;}}void YN(bool x) {if (x) {cout << "YES" << endl;}else {cout << "NO" << endl;}}int ipow(int x, int n) {int ans = 1;while (n > 0) {if (n & 1) ans *= x;x *= x;n >>= 1;}return ans;}template <typename T>vector<T> compress(vector<T>& X) {vector<T> vals = X;sort(ALL(vals));vals.erase(unique(ALL(vals)), vals.end());rep(i, SZ(X))X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();return vals;}v<pint> prime_factorize(int N) {v<pint> res;for (int i = 2; i * i <= N; i++) {if (N % i != 0) continue;int ex = 0;while (N % i == 0) {++ex;N /= i;}res.push_back({ i, ex });}if (N != 1) res.push_back({ N, 1 });return res;}struct Eratosthenes {v<bool> isprime;v<int> minfactor;Eratosthenes(int N) : isprime(N + 1, true),minfactor(N + 1, -1) {isprime[0] = false;isprime[1] = false;minfactor[1] = 1;for (int p = 2; p <= N; ++p) {if (!isprime[p]) continue;minfactor[p] = p;for (int q = p * 2; q <= N; q += p) {isprime[q] = false;if (minfactor[q] == -1) minfactor[q] = p;}}}v<pint> factorize(int n) {v<pint> res;while (n > 1) {int p = minfactor[n];int exp = 0;while (minfactor[n] == p) {n /= p;++exp;}res.emplace_back(p, exp);}return res;}};int number_of_divisors(v<pint> p) {int ans = 1;for (pint x : p) {ans *= x.second + 1;}return ans;}int sum_of_divisors(v<pint> p) {int ans = 1;for (pint x : p) {}return ans;}string base_to_k(int n, int k) {//n(10)→n(k)string ans = "";while (n) {ans += to_string(n % k);n /= k;}reverse(ALL(ans));return ans;}template< class T >struct CumulativeSum2D {vector< vector< T > > data;CumulativeSum2D(int W, int H) : data(W + 1, vector<int >(H + 1, 0)) {}void add(int x, int y, T z) {++x, ++y;if (x >= data.size() || y >= data[0].size()) return;data[x][y] += z;}void build() {for (int i = 1; i < data.size(); i++) {for (int j = 1; j < data[i].size(); j++) {data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];}}}T query(int sx, int sy, int gx, int gy) {return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);}};const int MAX_ROW = 2010; // to be set appropriatelyconst int MAX_COL = 2010; // to be set appropriatelystruct BitMatrix {int H, W;bitset<MAX_COL> val[MAX_ROW];BitMatrix(int m = 1, int n = 1) : H(m), W(n) {}inline bitset<MAX_COL>& operator [] (int i) { return val[i]; }};int GaussJordan(BitMatrix& A, bool is_extended = false) {int rank = 0;for (int col = 0; col < A.W; ++col) {if (is_extended && col == A.W - 1) break;int pivot = -1;for (int row = rank; row < A.H; ++row) {if (A[row][col]) {pivot = row;break;}}if (pivot == -1) continue;swap(A[pivot], A[rank]);for (int row = 0; row < A.H; ++row) {if (row != rank && A[row][col]) A[row] ^= A[rank];}++rank;}return rank;}int linear_equation(BitMatrix A, vector<int> b, vector<int>& res) {int m = A.H, n = A.W;BitMatrix M(m, n + 1);for (int i = 0; i < m; ++i) {for (int j = 0; j < n; ++j) M[i][j] = A[i][j];M[i][n] = b[i];}int rank = GaussJordan(M, true);//cout << "rank" << " " << SZ(res)-rank << endl;// check if it has no solutionfor (int row = rank; row < m; ++row) if (M[row][n]) return -1;// answerres.assign(n, 0);for (int i = 0; i < rank; ++i) res[i] = M[i][n];return rank;}/*rep(S, 1 << N) {rep(i, N) {rep(j, N) {if (S != 0 && !(bit(S,i))) continue;if (!bit(S,j)) {if (v != u) chmin(dp[S | (1 << v)][v], dp[S][u] + G[u][v]);}}}}*/vector<int> Z_algorithm(string S) {int c = 0, n = S.size();vector<int> Z(n, 0);for (int i = 1; i < n; i++) {int l = i - c;if (i + Z[l] < c + Z[c]) {Z[i] = Z[l];}else {int j = max(0, c + Z[c] - i);while (i + j < n && S[j] == S[i + j])j++;Z[i] = j;c = i;}}Z[0] = n;return Z;}//constexpr int MOD = 1000000007;constexpr int MOD = 998244353;//using mint = modint1000000007;//using mint = modint998244353;//using mint = static_modint<16637>;void solve() {ins(S);int w = 0, ans = 0;rrep(i, SZ(S)) {if (S[i] == 'c') {ans += w * (w - 1) / 2;}if (S[i] == 'w') {w++;}}cout << ans << endl;}signed main() {//ios::sync_with_stdio(false);//cin.tie(nullptr);cout << fixed << setprecision(14);//cout << setfill('0') << right << setw(3);solve();}