結果

問題 No.346 チワワ数え上げ問題
ユーザー UMRgurashiUMRgurashi
提出日時 2023-08-10 14:48:42
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 2,000 ms
コード長 8,783 bytes
コンパイル時間 10,365 ms
コンパイル使用メモリ 288,416 KB
最終ジャッジ日時 2025-02-16 00:31:05
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
#include <cstdlib>
//#include <atcoder/all>
//using namespace atcoder;
#include <chrono>
#define int long long
#define double long double
#define stoi stoll
//#define endl "\n"
using std::abs;
using namespace std;
constexpr double PI = 3.14159265358979323846;
const int INF = 1LL << 61;
const int dx[8] = { 0,1,0,-1,1,1,-1,-1 };
const int dy[8] = { 1,0,-1,0,1,-1,1,-1 };
#define rep(i,n) for(int i=0;i<n;++i)
#define REP(i,n) for(int i=1;i<=n;i++)
#define sREP(i,n) for(int i=1;i*i<=n;++i)
#define krep(i,k,n) for(int i=(k);i<n+k;i++)
#define Krep(i,k,n) for(int i=(k);i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define Rrep(i,n) for(int i=n;i>0;i--)
#define frep(i,n) for(auto &x:n)
#define LAST(x) x[x.size()-1]
#define ALL(x) (x).begin(),(x).end()
#define MAX(x) *max_element(ALL(x))
#define MIN(x) *min_element(ALL(x)
#define RUD(a,b) (((a)+(b)-1)/(b))
#define sum1_n(n) ((n)*(n+1)/2)
#define SUM1n2(n) (n*(2*n+1)*(n+1))/6
#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))
#define SZ(x) ((int)(x).size())
#define PB push_back
#define Fi first
#define Se second
#define lower(vec, i) *lower_bound(ALL(vec), i)
#define upper(vec, i) *upper_bound(ALL(vec), i)
#define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin())
#define acc(vec) accumulate(ALL(vec),0LL)
template<class... T>
constexpr auto min(T... a) {
return min(initializer_list<common_type_t<T...>>{a...});
}
template<class... T>
constexpr auto max(T... a) {
return max(initializer_list<common_type_t<T...>>{a...});
}
template<class... T>
void in(T&... a) {
(cin >> ... >> a);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T& t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
template <typename T>
bool nxp(vector<T>& v) {
return next_permutation(begin(v), end(v));
}
#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)
#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)
template <class T>
using v = vector<T>;
template <class T>
using vv = vector<v<T>>;
template <class T>
using vvv = vector<vv<T>>;
using pint = pair<int, int>;
using tint = tuple<int, int, int>;
using qint = tuple<int, int, int, int>;
double LOG(int a, int b) {
return log(b) / log(a);
}
int DISTANCE(pint a, pint b) {
return (abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second));
}
inline bool BETWEEN(int x, int min, int max) {
if (min <= x && x <= max)
return true;
else
return false;
}
inline bool between(int x, int min, int max) {
if (min < x && x < max) return true;
else return false;
}
inline bool BETWEEN2(int i, int j, int H, int W) {
if (BETWEEN(i, 0, H - 1) && BETWEEN(j, 0, W - 1)) return true;
else return false;
}
template<class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
inline bool bit(int x, int i) {
return x >> i & 1;
}
void yn(bool x) {
if (x) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
}
void YN(bool x) {
if (x) {
cout << "YES" << endl;
}
else {
cout << "NO" << endl;
}
}
int ipow(int x, int n) {
int ans = 1;
while (n > 0) {
if (n & 1) ans *= x;
x *= x;
n >>= 1;
}
return ans;
}
template <typename T>
vector<T> compress(vector<T>& X) {
vector<T> vals = X;
sort(ALL(vals));
vals.erase(unique(ALL(vals)), vals.end());
rep(i, SZ(X))
X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();
return vals;
}
v<pint> prime_factorize(int N) {
v<pint> res;
for (int i = 2; i * i <= N; i++) {
if (N % i != 0) continue;
int ex = 0;
while (N % i == 0) {
++ex;
N /= i;
}
res.push_back({ i, ex });
}
if (N != 1) res.push_back({ N, 1 });
return res;
}
struct Eratosthenes {
v<bool> isprime;
v<int> minfactor;
Eratosthenes(int N) : isprime(N + 1, true),
minfactor(N + 1, -1) {
isprime[0] = false;
isprime[1] = false;
minfactor[1] = 1;
for (int p = 2; p <= N; ++p) {
if (!isprime[p]) continue;
minfactor[p] = p;
for (int q = p * 2; q <= N; q += p) {
isprime[q] = false;
if (minfactor[q] == -1) minfactor[q] = p;
}
}
}
v<pint> factorize(int n) {
v<pint> res;
while (n > 1) {
int p = minfactor[n];
int exp = 0;
while (minfactor[n] == p) {
n /= p;
++exp;
}
res.emplace_back(p, exp);
}
return res;
}
};
int number_of_divisors(v<pint> p) {
int ans = 1;
for (pint x : p) {
ans *= x.second + 1;
}
return ans;
}
int sum_of_divisors(v<pint> p) {
int ans = 1;
for (pint x : p) {
}
return ans;
}
string base_to_k(int n, int k) {
//n(10)→n(k)
string ans = "";
while (n) {
ans += to_string(n % k);
n /= k;
}
reverse(ALL(ans));
return ans;
}
template< class T >
struct CumulativeSum2D {
vector< vector< T > > data;
CumulativeSum2D(int W, int H) : data(W + 1, vector<int >(H + 1, 0)) {}
void add(int x, int y, T z) {
++x, ++y;
if (x >= data.size() || y >= data[0].size()) return;
data[x][y] += z;
}
void build() {
for (int i = 1; i < data.size(); i++) {
for (int j = 1; j < data[i].size(); j++) {
data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];
}
}
}
T query(int sx, int sy, int gx, int gy) {
return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);
}
};
const int MAX_ROW = 2010; // to be set appropriately
const int MAX_COL = 2010; // to be set appropriately
struct BitMatrix {
int H, W;
bitset<MAX_COL> val[MAX_ROW];
BitMatrix(int m = 1, int n = 1) : H(m), W(n) {}
inline bitset<MAX_COL>& operator [] (int i) { return val[i]; }
};
int GaussJordan(BitMatrix& A, bool is_extended = false) {
int rank = 0;
for (int col = 0; col < A.W; ++col) {
if (is_extended && col == A.W - 1) break;
int pivot = -1;
for (int row = rank; row < A.H; ++row) {
if (A[row][col]) {
pivot = row;
break;
}
}
if (pivot == -1) continue;
swap(A[pivot], A[rank]);
for (int row = 0; row < A.H; ++row) {
if (row != rank && A[row][col]) A[row] ^= A[rank];
}
++rank;
}
return rank;
}
int linear_equation(BitMatrix A, vector<int> b, vector<int>& res) {
int m = A.H, n = A.W;
BitMatrix M(m, n + 1);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) M[i][j] = A[i][j];
M[i][n] = b[i];
}
int rank = GaussJordan(M, true);
//cout << "rank" << " " << SZ(res)-rank << endl;
// check if it has no solution
for (int row = rank; row < m; ++row) if (M[row][n]) return -1;
// answer
res.assign(n, 0);
for (int i = 0; i < rank; ++i) res[i] = M[i][n];
return rank;
}
/*
rep(S, 1 << N) {
rep(i, N) {
rep(j, N) {
if (S != 0 && !(bit(S,i))) continue;
if (!bit(S,j)) {
if (v != u) chmin(dp[S | (1 << v)][v], dp[S][u] + G[u][v]);
}
}
}
}
*/
vector<int> Z_algorithm(string S) {
int c = 0, n = S.size();
vector<int> Z(n, 0);
for (int i = 1; i < n; i++) {
int l = i - c;
if (i + Z[l] < c + Z[c]) {
Z[i] = Z[l];
}
else {
int j = max(0, c + Z[c] - i);
while (i + j < n && S[j] == S[i + j])j++;
Z[i] = j;
c = i;
}
}
Z[0] = n;
return Z;
}
//constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
//using mint = modint1000000007;
//using mint = modint998244353;
//using mint = static_modint<16637>;
void solve() {
ins(S);
int w = 0, ans = 0;
rrep(i, SZ(S)) {
if (S[i] == 'c') {
ans += w * (w - 1) / 2;
}
if (S[i] == 'w') {
w++;
}
}
cout << ans << endl;
}
signed main() {
//ios::sync_with_stdio(false);
//cin.tie(nullptr);
cout << fixed << setprecision(14);
//cout << setfill('0') << right << setw(3);
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0