結果

問題 No.2413 Multiple of 99
ユーザー 👑 tute7627tute7627
提出日時 2023-08-11 22:02:24
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,405 ms / 8,000 ms
コード長 25,370 bytes
コンパイル時間 4,654 ms
コンパイル使用メモリ 247,616 KB
実行使用メモリ 27,304 KB
最終ジャッジ日時 2024-11-18 16:21:26
合計ジャッジ時間 19,344 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 14 ms
5,248 KB
testcase_05 AC 31 ms
5,248 KB
testcase_06 AC 28 ms
5,248 KB
testcase_07 AC 1,254 ms
25,984 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 1,239 ms
25,984 KB
testcase_10 AC 1,269 ms
26,112 KB
testcase_11 AC 1,369 ms
27,140 KB
testcase_12 AC 1,405 ms
26,080 KB
testcase_13 AC 1,293 ms
26,080 KB
testcase_14 AC 1,310 ms
26,128 KB
testcase_15 AC 1,322 ms
25,984 KB
testcase_16 AC 605 ms
15,500 KB
testcase_17 AC 598 ms
15,768 KB
testcase_18 AC 1,260 ms
27,304 KB
testcase_19 AC 68 ms
5,248 KB
testcase_20 AC 32 ms
5,248 KB
testcase_21 AC 68 ms
5,248 KB
testcase_22 AC 1,258 ms
27,228 KB
testcase_23 AC 143 ms
6,104 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG

//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")

#include<bits/stdc++.h>
using namespace std;


#ifdef LOCAL
#include <debug_print.hpp>
#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define OUT(...) (static_cast<void>(0))
#endif

#define endl '\n'
#define lfs cout<<fixed<<setprecision(15)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
  return ord;
}
template<typename T> vector<T> inv_perm(const vector<T>&ord){
  vector<T>inv(ord.size());
  for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
  return inv;
}
ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
ll modulo(ll n,ll d){return (n%d+d)%d;};
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
namespace converter{
  int dict[500];
  const string lower="abcdefghijklmnopqrstuvwxyz";
  const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
  const string digit="0123456789";
  const string digit1="123456789";
  void regi_str(const string &t){
    for(int i=0;i<t.size();i++){
      dict[t[i]]=i;
    }
  }
  void regi_int(const string &t){
    for(int i=0;i<t.size();i++){
      dict[i]=t[i];
    }
  }
  vector<int>to_int(const string &s,const string &t){
    regi_str(t);
    vector<int>ret(s.size());
    for(int i=0;i<s.size();i++){
      ret[i]=dict[s[i]];
    }
    return ret;
  }
  vector<int>to_int(const string &s){
    auto t=s;
    sort(t.begin(),t.end());
    t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  
  vector<vector<int>>to_int(const vector<string>&s,const string &t){
    regi_str(t);
    vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));
    for(int i=0;i<s.size();i++){
      for(int j=0;j<s[0].size();j++){
        ret[i][j]=dict[s[i][j]];
      }
    }
    return ret;
  }
  vector<vector<int>>to_int(const vector<string>&s){
    string t;
    for(int i=0;i<s.size();i++){
      t+=s[i];
    }
    sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  string to_str(const vector<int>&s,const string &t){
    regi_int(t);
    string ret;
    for(auto z:s)ret+=dict[z];
    return ret;
  }
  vector<string> to_str(const vector<vector<int>>&s,const string &t){
    regi_int(t);
    vector<string>ret(s.size());
    for(int i=0;i<s.size();i++){
      for(auto z:s[i])ret[i]+=dict[z];
    }
    return ret;
  }
}
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():to(-1),id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
  Graph<T>ret(g.size());
  for(int i=0;i<g.size();i++){
    for(auto e:g[i]){
      int to = e.to;
      e.to = i;
      ret[to].push_back(e);
    }
  }
  return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v;
    T w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}
template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) += rhs;
  }
  friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) -= rhs;
  }
  friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) *= rhs;
  }
  friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) /= rhs;
  }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;

  Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }

  inline T fact(ll k) const { return _fact[k]; }

  inline T rfact(ll k) const { return _rfact[k]; }

  inline T inv(ll k) const { return _inv[k]; }

  T P(ll n, ll r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }
  
  T RC(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return rfact(p) * fact(q) * fact(p - q);
  }

  T H(ll n, ll r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
  //+1がm個、-1がn個で prefix sumが常にk以上
  T catalan(ll m,ll n,ll k){
    if(n>m-k)return 0;
    else return C(n+m,m)-C(n+m,n+k-1);
  }
};
using modint = ModInt< MOD9 >;modint mpow(ll n, ll x){return modint(n).pow(x);}modint mpow(modint n, ll x){return n.pow(x);}
//using modint=ld;modint mpow(ll n, ll x){return pow(n,x);}modint mpow(modint n, ll x){return pow(n,x);}
using Comb=Combination<modint>;
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
  static vector< Mint > dw, idw;
  static int max_base;
  static Mint root;
  NumberTheoreticTransformFriendlyModInt() = default;
  static void init() {
    const unsigned mod = Mint::get_mod();
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(root.pow((mod - 1) >> 1) == 1) root += 1;
    assert(root.pow(mod - 1) == 1);
    dw.resize(max_base);
    idw.resize(max_base);
    for(int i = 0; i < max_base; i++) {
      dw[i] = -root.pow((mod - 1) >> (i + 2));
      idw[i] = Mint(1) / dw[i];
    }
  }
 
  static void ntt(vector< Mint > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = n; m >>= 1;) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j] * w;
          a[i] = x + y, a[j] = x - y;
        }
        w *= dw[__builtin_ctz(++k)];
      }
    }
  }
 
  static void intt(vector< Mint > &a, bool f = true) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = 1; m < n; m *= 2) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j];
          a[i] = x + y, a[j] = (x - y) * w;
        }
        w *= idw[__builtin_ctz(++k)];
      }
    }
    if(f) {
      Mint inv_sz = Mint(1) / n;
      for(int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }
 
  static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};
template< typename Mint >
vector< Mint >  NumberTheoreticTransformFriendlyModInt<Mint>::dw = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
template< typename Mint >
Mint NumberTheoreticTransformFriendlyModInt< Mint >::root = 2;
 
 
//ret[i-j]=x[i]*y[j]
template<typename Conv, typename T>
vector<T>multiply_minus(vector<T>x,vector<T>y){
  reverse(y.begin(),y.end());
  auto tmp = Conv::multiply(x,y);
  vector<T>ret(x.size());
  for(int i = 0; i < x.size(); i++){
    ret[i] = tmp[y.size() - 1 + i];
  }
  return ret;
}
template< typename T >
struct FormalPowerSeriesFriendlyNTT : vector< T > {
  using vector< T >::vector;
  using P = FormalPowerSeriesFriendlyNTT;
  using NTT = NumberTheoreticTransformFriendlyModInt< T >;

  P pre(int deg) const {
    return P(begin(*this), begin(*this) + min((int) this->size(), deg));
  }

  P rev(int deg = -1) const {
    P ret(*this);
    if(deg != -1) ret.resize(deg, T(0));
    reverse(begin(ret), end(ret));
    return ret;
  }

  void shrink() {
    while(this->size() && this->back() == T(0)) this->pop_back();
  }

  P operator+(const P &r) const { return P(*this) += r; }

  P operator+(const T &v) const { return P(*this) += v; }

  P operator-(const P &r) const { return P(*this) -= r; }

  P operator-(const T &v) const { return P(*this) -= v; }

  P operator*(const P &r) const { return P(*this) *= r; }

  P operator*(const T &v) const { return P(*this) *= v; }

  P operator/(const P &r) const { return P(*this) /= r; }

  P operator%(const P &r) const { return P(*this) %= r; }

  P &operator+=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < (int) r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  P &operator-=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < (int) r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  // https://judge.yosupo.jp/problem/convolution_mod
  P &operator*=(const P &r) {
    if(this->empty() || r.empty()) {
      this->clear();
      return *this;
    }
    auto ret = NTT::multiply(*this, r);
    return *this = {begin(ret), end(ret)};
  }

  P &operator/=(const P &r) {
    if(this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
  }

  P &operator%=(const P &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  // https://judge.yosupo.jp/problem/division_of_polynomials
  pair< P, P > div_mod(const P &r) {
    P q = *this / r;
    P x = *this - q * r;
    x.shrink();
    return make_pair(q, x);
  }

  P operator-() const {
    P ret(this->size());
    for(int i = 0; i < (int) this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  P &operator+=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  P &operator-=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  P &operator*=(const T &v) {
    for(int i = 0; i < (int) this->size(); i++) (*this)[i] *= v;
    return *this;
  }

  P dot(P r) const {
    P ret(min(this->size(), r.size()));
    for(int i = 0; i < (int) ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  P operator>>(int sz) const {
    if((int) this->size() <= sz) return {};
    P ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  P operator<<(int sz) const {
    P ret(*this);
    ret.insert(ret.begin(), sz, T(0));
    return ret;
  }

  T operator()(T x) const {
    T r = 0, w = 1;
    for(auto &v : *this) {
      r += w * v;
      w *= x;
    }
    return r;
  }

  P diff() const {
    const int n = (int) this->size();
    P ret(max(0, n - 1));
    for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
    return ret;
  }

  P integral() const {
    const int n = (int) this->size();
    P ret(n + 1);
    ret[0] = T(0);
    for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
    return ret;
  }

  // https://judge.yosupo.jp/problem/inv_of_formal_power_series
  // F(0) must not be 0
  P inv(int deg = -1) const {
    assert(((*this)[0]) != T(0));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    P res(deg);
    res[0] = {T(1) / (*this)[0]};
    for(int d = 1; d < deg; d <<= 1) {
      P f(2 * d), g(2 * d);
      for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
      for(int j = 0; j < d; j++) g[j] = res[j];
      NTT::ntt(f);
      NTT::ntt(g);
      f = f.dot(g);
      NTT::intt(f);
      for(int j = 0; j < d; j++) f[j] = 0;
      NTT::ntt(f);
      for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
      NTT::intt(f);
      for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
    }
    return res;
  }

  // https://judge.yosupo.jp/problem/log_of_formal_power_series
  // F(0) must be 1
  P log(int deg = -1) const {
    assert((*this)[0] == T(1));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
  P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const {
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    if((*this)[0] == T(0)) {
      for(int i = 1; i < n; i++) {
        if((*this)[i] != T(0)) {
          if(i & 1) return {};
          if(deg - i / 2 <= 0) break;
          auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
          if(ret.empty()) return {};
          ret = ret << (i / 2);
          if((int) ret.size() < deg) ret.resize(deg, T(0));
          return ret;
        }
      }
      return P(deg, 0);
    }
    auto sqr = T(get_sqrt((*this)[0]));
    if(sqr * sqr != (*this)[0]) return {};
    P ret{sqr};
    T inv2 = T(1) / T(2);
    for(int i = 1; i < deg; i <<= 1) {
      ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
    }
    return ret.pre(deg);
  }

  P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const {
    return sqrt(deg, get_sqrt);
  }

  // https://judge.yosupo.jp/problem/exp_of_formal_power_series
  // F(0) must be 0
  P exp(int deg = -1) const {
    if(deg == -1) deg = this->size();
    assert((*this)[0] == T(0));

    P inv;
    inv.reserve(deg + 1);
    inv.push_back(T(0));
    inv.push_back(T(1));

    auto inplace_integral = [&](P &F) -> void {
      const int n = (int) F.size();
      auto mod = T::get_mod();
      while((int) inv.size() <= n) {
        int i = inv.size();
        inv.push_back((-inv[mod % i]) * (mod / i));
      }
      F.insert(begin(F), T(0));
      for(int i = 1; i <= n; i++) F[i] *= inv[i];
    };

    auto inplace_diff = [](P &F) -> void {
      if(F.empty()) return;
      F.erase(begin(F));
      T coeff = 1, one = 1;
      for(int i = 0; i < (int) F.size(); i++) {
        F[i] *= coeff;
        coeff += one;
      }
    };

    P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
    for(int m = 2; m < deg; m *= 2) {
      auto y = b;
      y.resize(2 * m);
      NTT::ntt(y);
      z1 = z2;
      P z(m);
      for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
      NTT::intt(z);
      fill(begin(z), begin(z) + m / 2, T(0));
      NTT::ntt(z);
      for(int i = 0; i < m; ++i) z[i] *= -z1[i];
      NTT::intt(z);
      c.insert(end(c), begin(z) + m / 2, end(z));
      z2 = c;
      z2.resize(2 * m);
      NTT::ntt(z2);
      P x(begin(*this), begin(*this) + min< int >(this->size(), m));
      inplace_diff(x);
      x.push_back(T(0));
      NTT::ntt(x);
      for(int i = 0; i < m; ++i) x[i] *= y[i];
      NTT::intt(x);
      x -= b.diff();
      x.resize(2 * m);
      for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);
      NTT::ntt(x);
      for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
      NTT::intt(x);
      x.pop_back();
      inplace_integral(x);
      for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];
      fill(begin(x), begin(x) + m, T(0));
      NTT::ntt(x);
      for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
      NTT::intt(x);
      b.insert(end(b), begin(x) + m, end(x));
    }
    return P{begin(b), begin(b) + deg};
  }

  // https://judge.yosupo.jp/problem/pow_of_formal_power_series
  P pow(int64_t k, int deg = -1) const {
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    for(int i = 0; i < n; i++) {
      if((*this)[i] != T(0)) {
        T rev = T(1) / (*this)[i];
        P ret = (((*this * rev) >> i).log(deg) * k).exp() * ((*this)[i].pow(k));
        if(i * k > deg) return P(deg, T(0));
        if((int) ret.size() < deg) ret.resize(deg, T(0));
        ret = (ret << (i * k)).pre(deg);
        return ret;
      }
    }
    return *this;
  }

  P mod_pow(int64_t k, P g) const {
    P modinv = g.rev().inv();
    auto get_div = [&](P base) {
      if(base.size() < g.size()) {
        base.clear();
        return base;
      }
      int n = base.size() - g.size() + 1;
      return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
    };
    P x(*this), ret{1};
    while(k > 0) {
      if(k & 1) {
        ret *= x;
        ret -= get_div(ret) * g;
        ret.shrink();
      }
      x *= x;
      x -= get_div(x) * g;
      x.shrink();
      k >>= 1;
    }
    return ret;
  }

  // https://judge.yosupo.jp/problem/polynomial_taylor_shift
  P taylor_shift(T c) const {
    int n = (int) this->size();
    vector< T > fact(n), rfact(n);
    fact[0] = rfact[0] = T(1);
    for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
    rfact[n - 1] = T(1) / fact[n - 1];
    for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
    P p(*this);
    for(int i = 0; i < n; i++) p[i] *= fact[i];
    p = p.rev();
    P bs(n, T(1));
    for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
    p = (p * bs).pre(n);
    p = p.rev();
    for(int i = 0; i < n; i++) p[i] *= rfact[i];
    return p;
  }
};

template< typename Mint >
using FPS = FormalPowerSeriesFriendlyNTT< Mint >;
 
template<typename Poly>
Poly multiply_all(vector<Poly>&fs){
  queue<Poly>que;
  for(auto f:fs)que.push(f);
  while(que.size()>=2){
    auto p=que.front();
    que.pop();
    auto q=que.front();
    que.pop();
    que.push(p*q);
  }
  return que.front();
}

int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  NumberTheoreticTransformFriendlyModInt<modint>::init();
  ll n,k;cin>>n>>k;
  FPS<modint>dig(11);
  rep(i,0,10)dig[i]=1;
  int lim=(n+5)/2*9;
  auto l=dig.pow(n/2,lim);
  auto r=dig.pow((n+1)/2,lim);
  modint ret=0;
  //OUT(l,r);
  if(l.size()<=11)l.resize(11);
  if(r.size()<=11)r.resize(11);
  vector<modint>pw(n*10);
  rep(i,0,11){
    FPS<modint>x,y;
    for(int j=i;j<l.size();j+=11)x.PB(l[j]);
    for(int j=i;j<r.size();j+=11)y.PB(r[j]);
    auto z=x*y;
    //OUT(x,y,z);
    rep(j,0,z.size()){
      if((j*11+2*i)%9==0){
        //OUT(i,j,j*11+i+di,z[j]);
        ret+=z[j]*modint(j*11+i*2).pow(k);
      }
    }
  }
  cout<<ret<<endl;
  return 0;
}
0