結果

問題 No.2411 Reverse Directions
ユーザー kaikeykaikey
提出日時 2023-08-11 22:07:53
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,996 bytes
コンパイル時間 2,837 ms
コンパイル使用メモリ 220,772 KB
実行使用メモリ 13,568 KB
最終ジャッジ日時 2024-11-18 16:30:13
合計ジャッジ時間 5,929 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 WA -
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 10 ms
13,568 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 9 ms
6,820 KB
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 3 ms
6,820 KB
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 2 ms
6,816 KB
testcase_20 WA -
testcase_21 AC 2 ms
6,816 KB
testcase_22 WA -
testcase_23 AC 11 ms
6,820 KB
testcase_24 WA -
testcase_25 AC 4 ms
6,816 KB
testcase_26 AC 3 ms
6,816 KB
testcase_27 AC 2 ms
6,816 KB
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 AC 3 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
    for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
    return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
    for (T& in : v) is >> in;
    return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
    F f;
    rec(F&& f_) : f(std::forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&... args) const {
        return f(*this, std::forward<Args>(args)...);
    }
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const long long MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
    lint from, to;
    lint cost;
    Edge() {

    }
    Edge(lint u, lint v, lint c) {
        cost = c;
        from = u;
        to = v;
    }
    bool operator<(const Edge& e) const {
        return cost < e.cost;
    }
};
struct WeightedEdge {
    lint to;
    lint cost;
    WeightedEdge(lint v, lint c) {
        to = v;
        cost = c;
    }
    bool operator<(const WeightedEdge& e) const {
        return cost < e.cost;
    }
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<Edge, lint> pEd;
typedef pair<lint, Vl> vVl;
typedef pair<set<lint>, set<lint>> pset;

int main() {
    lint H, W, L, R, K;
    cin >> H >> W >> K >> L >> R; L--;
    V<string> arr(H);
    cin >> arr;
    if ((H + W) % 2 != K % 2) {
        yn(false);
        return 0;
    }
    VVVl dp(2, VVl(H, Vl(W, INF)));
    VVVl rev(2, VVl(H, Vl(W, -1)));
    {
        queue<plint> que;
        que.push({ 0, 0 });
        dp[0][0][0] = 0;
        while (!que.empty()) {
            auto [x, y] = que.front(); que.pop();
            REP(k, 4) {
                lint nx = x + dx[k], ny = y + dy[k];
                if (nx < 0 || nx >= H || ny < 0 || ny >= W) continue;
                if (arr[nx][ny] != '.') continue;
                if (chmin(dp[0][nx][ny], dp[0][x][y] + 1)) {
                    que.push({ nx, ny });
                    rev[0][nx][ny] = k;
                }
            }
        }
    }
    {
        queue<plint> que;
        que.push({ H - 1, W - 1 });
        dp[1][H - 1][W - 1] = 0;
        while (!que.empty()) {
            auto [x, y] = que.front(); que.pop();
            REP(k, 4) {
                lint nx = x + dx[k], ny = y + dy[k];
                if (nx < 0 || nx >= H || ny < 0 || ny >= W) continue;
                if (arr[nx][ny] != '.') continue;
                if (chmin(dp[1][nx][ny], dp[1][x][y] + 1)) {
                    que.push({ nx, ny });
                    rev[1][nx][ny] = k;
                }
            }
        }
    }

    plint ok = { -1, -1 };
    REP(i, H) {
        REP(j, W) {
            lint d1 = L - dp[0][i][j], d2 = (K - R) - dp[1][i][j];
            if (d1 < 0 || d1 % 2 == 1 || d2 < 0 || d2 % 2 == 1) continue;
            lint bit = 0;
            REP(k, 4) {
                lint nx = i + dx[k], ny = j + dy[k];
                if (nx < 0 || nx >= H || ny < 0 || ny >= W) continue;
                if (arr[nx][ny] != '.') continue;
                bit |= (1 << k);
            }
            if ((bit & 5) == 5 || (bit & 10) == 10) {
                ok = { i, j };
            }
        }
    }
    if (yn(ok.first != -1)) {
        string ans = "", tmp = "";
        {
            plint curr = ok;
            while (curr.first != 0 || curr.second != 0) {
                lint v = rev[0][curr.first][curr.second];
                if (v == 0) ans += "R", curr.second--;
                if (v == 1) ans += "D", curr.first--;
                if (v == 2) ans += "L", curr.second++;
                if (v == 3) ans += "U", curr.first++;
            }
            reverse(ALL(ans));
        }
        {
            plint curr = ok;
            while (curr.first != H - 1 || curr.second != W - 1) {
                lint v = rev[1][curr.first][curr.second];
                if (v == 0) tmp += "R", curr.second--;
                if (v == 1) tmp += "D", curr.first--;
                if (v == 2) tmp += "L", curr.second++;
                if (v == 3) tmp += "U", curr.first++;
            }
        }
        lint need = K - SZ(ans) - SZ(tmp);
        lint bit = 0;
        REP(k, 4) {
            lint nx = ok.first + dx[k], ny = ok.second + dy[k];
            if (nx < 0 || nx >= H || ny < 0 || ny >= W) continue;
            if (arr[nx][ny] != '.') continue;
            bit |= (1 << k);
        }
        if ((bit & 5) == 5) {
            REP(_, need / 2) ans += "RL";
        }
        else {
            REP(_, need / 2) ans += "UD";
        }
        cout << ans << tmp << endk;
    }
}
0