結果

問題 No.2411 Reverse Directions
ユーザー eQeeQe
提出日時 2023-08-11 23:19:20
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 30 ms / 2,000 ms
コード長 8,597 bytes
コンパイル時間 7,481 ms
コンパイル使用メモリ 336,160 KB
実行使用メモリ 15,008 KB
最終ジャッジ日時 2024-11-18 18:42:41
合計ジャッジ時間 8,169 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 10 ms
8,548 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 11 ms
9,728 KB
testcase_08 AC 3 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 26 ms
15,008 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 30 ms
10,316 KB
testcase_13 AC 3 ms
5,248 KB
testcase_14 AC 10 ms
6,684 KB
testcase_15 AC 5 ms
5,516 KB
testcase_16 AC 3 ms
5,248 KB
testcase_17 AC 11 ms
6,072 KB
testcase_18 AC 7 ms
5,744 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 9 ms
5,376 KB
testcase_21 AC 4 ms
5,248 KB
testcase_22 AC 21 ms
9,256 KB
testcase_23 AC 3 ms
5,248 KB
testcase_24 AC 27 ms
9,088 KB
testcase_25 AC 3 ms
5,248 KB
testcase_26 AC 3 ms
5,248 KB
testcase_27 AC 3 ms
5,248 KB
testcase_28 AC 19 ms
9,820 KB
testcase_29 AC 30 ms
12,248 KB
testcase_30 AC 21 ms
10,496 KB
testcase_31 AC 4 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
#define eb emplace_back
#define all(a) (a).begin(),(a).end()
#define done(...) return pp(__VA_ARGS__)
#define RD(T,...) T __VA_ARGS__;li(__VA_ARGS__)
#define LL(...) RD(ll,__VA_ARGS__)
#define VE(a,...) auto a=vec(__VA_ARGS__)
#define JO(a,b) a##b
#define jo(a,b) JO(a,b)
#define uqsymb(a) jo(a,__LINE__)
#define FE(v,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):v)
#define FO(n) for(ll uqsymb(i)=n;uqsymb(i)-->0;)
#define FOR(i,...) for(auto[i,i##O,i##E]=rng(0,__VA_ARGS__);i<i##O;i+=i##E)
#define fe(v,...) FE(v,__VA_ARGS__)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define of(i,...) for(auto[i,i##O,i##E]=rng(1,__VA_ARGS__);i>=i##O;i-=i##E)
using std::cin,std::cout,std::begin,std::end,std::rbegin;
using std::swap,std::move,std::abs,std::prev,std::next;
using std::tuple,std::bitset,std::minmax,std::get;
using vo=void;using bo=bool;
vo solve();
using is=std::istream;using os=std::ostream;
using dd=long double;using ll=long long;using ull=unsigned long long;
using lll=__int128_t;using ulll=__uint128_t;using str=std::string;
using namespace atcoder;using ml=modint;auto&operator<<(os&o,const ml&x){return o<<x.val();}
constexpr ll oo=3e18;
constexpr ll dx[]{-1,0,1,0,-1,1,1,-1},dy[]{0,-1,0,1,-1,-1,1,1};
constexpr char sp=32;
constexpr char nl=10;
auto yes(bo y){return y?"Yes":"No";}
auto no(){return yes(0);}
auto rng(bo s,ll a,ll b=oo,ll c=1){if(b==oo)b=a,(s?b:a)=0;return tuple{a-s,b,c};}

bo odd(ll x){return x&1;}
bo eve(ll x){return~x&1;}
ll pw2(ll n){return 1LL<<n;}
template<class T>bo at2(T x,ll i){return x>>i&1;}
template<class T,class U,class V>bo in(T l,U m,V r){return l<=m&&m<r;}
template<class T>T zz(T x){return x<0?-x:x;}
template<class T>ll len(const T&a){return a.size();}

struct edg{
  ll t,w;
  edg(){}
  edg(ll t,ll w=1):t(t),w(w){}
  friend os&operator<<(os&o,const edg&e){return o<<e.t<<sp<<e.w;}
};

template<class A,class B=A>struct cp{
  A a={};B b={};
  cp(){}
  cp(A a,B b):a(a),b(b){}
  cp(std::pair<A,B>p):a(p.first),b(p.second){}
  bo operator==(const cp&c)const{return a==c.a&&b==c.b;}
  bo operator<(const cp&c)const{return a!=c.a?a<c.a:b<c.b;}
  bo operator>(const cp&c)const{return a!=c.a?a>c.a:b>c.b;}

  friend is&operator>>(is&i,cp&c){return i>>c.a>>c.b;}
  friend os&operator<<(os&o,const cp&c){return o<<c.a<<sp<<c.b;}
};using cl=cp<ll>;
template<class A,class B=A,class C=A>struct tr{
  A a={};B b={};C c={};
  tr(){}
  tr(A a,B b,C c):a(a),b(b),c(c){}
  bo operator==(const tr&t)const{return a==t.a&&b==t.b&&c==t.c;}

  auto operator<(const tr&t)const{return a!=t.a?a<t.a:b!=t.b?b<t.b:c<t.c;}
  friend is&operator>>(is&i,tr&t){return i>>t.a>>t.b>>t.c;}
  friend os&operator<<(os&o,const tr&t){return o<<t.a<<sp<<t.b<<sp<<t.c;}
};using tl=tr<ll>;

template<class T>T&rv(T&a){reverse(all(a));return a;}
template<class T>decltype(auto)rb(T&a){return*rbegin(a);}
template<class T>auto pot(T&a){auto r=a.top();a.pop();return r;}

template<class T>struct deq:std::deque<T>{
  using std::deque<T>::deque;
  deq(const std::vector<T>&a={}){fe(a,e)this->eb(e);}
  friend os&operator<<(os&o,const deq&q){fe(q,e)o<<e<<str(&e!=&q.back(),sp);return o;}
};

template<class V>struct ve;
template<class V>constexpr bo isv=0;
template<class V>constexpr bo isv<ve<V>> =1;
template<class V>constexpr bo isv<std::vector<V>> =1;
template<class V>auto rawv(V){if constexpr(isv<V>)return rawv(V(1)[0]);else return V();}

template<class V>struct ve:std::vector<V>{
  using std::vector<V>::vector;
  using T=decltype(rawv(V()));
  template<class U>ve(const std::vector<U>&v={}){fe(v,e)this->eb(e);}

  auto&operator+=(const ve&u){auto&v=*this;fo(i,len(v))v[i]+=u[i];return v;}
  auto&operator-=(const ve&u){auto&v=*this;fo(i,len(v))v[i]-=u[i];return v;}
  auto&operator^=(const ve&u){fe(u,e)this->eb(e);return*this;}
  auto&operator+=(const T&x){auto&v=*this;fe(v,e)e+=x;return v;}
  auto&operator-=(const T&x){auto&v=*this;fe(v,e)e-=x;return v;}
  auto&operator*=(const T&x){auto&v=*this;fe(v,e)e*=x;return v;}
  template<size_t n>auto&operator+=(const bitset<n>&a){fo(i,n)(*this)[i]+=a[i];return*this;}
  template<size_t n>auto&operator-=(const bitset<n>&a){fo(i,n)(*this)[i]-=a[i];return*this;}

  auto operator+(const ve&u){return ve(*this)+=u;}
  auto operator-(const ve&u){return ve(*this)-=u;}
  auto operator^(const ve&u){return ve(*this)^=u;}
  auto operator+(const T&x){return ve(*this)+=x;}auto&operator++(){return*this+=1;}
  auto operator-(const T&x){return ve(*this)-=x;}auto&operator--(){return*this-=1;}
  auto operator*(const T&x){return ve(*this)*=x;}auto operator-(){return ve(*this)*=-1;}

  auto lower_bound(const V&x)const{return std::lower_bound(all(*this),x);}
  auto upper_bound(const V&x)const{return std::upper_bound(all(*this),x);}

  auto de(const str&b="a"){std::conditional_t<isv<V>,ve<str>,str>r;fe(*this,e)if constexpr(isv<V>)r.eb(e.de(b));else r+=len(b)==1?e+b[0]:b[e];return r;}
};
template<class T=ll,size_t n,size_t i=0>auto vec(const ll(&s)[n],T x={}){if constexpr(n==i+1)return ve<T>(s[i],x);else{auto X=vec<T,n,i+1>(s,x);return ve<decltype(X)>(s[i],X);}}
template<ll n,class...A>vo setsize(const ll(&l)[n],A&...a){((a=vec(l,rawv(a))),...);}
template<class T>using vve=ve<ve<T>>;using vl=ve<ll>;using vvl=vve<ll>;
using gl=ve<ve<ll>>;using ge=ve<ve<edg>>;

struct io{io(){cin.tie(0)->sync_with_stdio(0);
  cout<<std::fixed<<std::setprecision(15);std::cerr<<nl;}}io;
os&operator<<(os&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);}
os&operator<<(os&o,const lll&x){return o<<str(x<0,'-')<<ulll(zz(x));}
template<size_t n>os&operator<<(os&o,const bitset<n>&b){fo(i,n)o<<b[i];return o;}
template<class...A>os&operator<<(os&o,const tuple<A...>&t){
  apply([&](const auto&...a){ll i=0;(((o<<a<<str(++i!=sizeof...(a),sp))),...);},t);return o;}
template<class V>os&operator<<(os&o,const std::vector<V>&v){fe(v,e)o<<e<<str(&e!=&rb(v),isv<V>?nl:sp);return o;}
template<char c=sp,class...A>vo pp(const A&...a){ll i=0;((cout<<a<<str(++i!=sizeof...(a),c)),...);cout<<nl;}
template<class V>is&operator>>(is&i,std::vector<V>&v){fe(v,e)i>>e;return i;}
template<class...A>vo li(A&...a){(cin>>...>>a);}
vl sien(const str&b="a"){str s;li(s);vl r;fe(s,e)r.eb(len(b)==1?e-b[0]:b.find_first_of(e));return r;}
vvl sien(ll n,const str&b="a"){vvl r;fo(n)r.eb(sien(b));return r;}

template<class F>struct rec:F{rec(F&&f):F(std::forward<F>(f)){}template<class...A>decltype(auto)operator()(A&&...a)const{return F::operator()(*this,std::forward<A>(a)...);}};

vve<ll>bfs_on_grid(const vve<ll>&g,ll sx=0,ll sy=0){
  ll h=len(g),w=len(g[0]);
  vve<ll>d(h,ve<ll>(w,oo));d[sx][sy]=0;
  deq<cl>q{{sx,sy}};
  while(len(q)){
    auto[x,y]=q.front();q.pop_front();
    fo(k,4){
      ll nx=x+dx[k],ny=y+dy[k];
      if(nx<0||ny<0||nx>=h||ny>=w)continue;
      if(g[nx][ny])continue;
      if(d[nx][ny]==oo)d[nx][ny]=d[x][y]+1,q.eb(nx,ny);
    }
  }
  return d;
}

int main(){ll T=1;fo(T)solve();}
vo solve(){
  LL(H,W,K,L,R);
  vvl s=sien(H,".#");
  if(odd(H+W-2+K))done(no());
  if(odd(R-L+1))done(no());

  VE(safe,{H,W},short());
  fo(i,H)fo(j,W)if(!s[i][j]){
    ll t=0;
    fo(k,4){
      ll ni=i+dx[k],nj=j+dy[k];
      if(!in(0,ni,H)||!in(0,nj,W))continue;
      if(s[ni][nj])continue;
      t|=pw2(k);
    }

    if(at2(t,0)&&at2(t,2))safe[i][j]=1;
    if(at2(t,1)&&at2(t,3))safe[i][j]=2;
  }

  vvl dist1=bfs_on_grid(s,0,0);
  vvl dist2=bfs_on_grid(s,H-1,W-1);

  if(dist1[H-1][W-1]==oo)done(no());

  fo(i,H)fo(j,W)if(safe[i][j]){
    if(dist1[i][j]<L&&dist2[i][j]<=K-R&&eve(i+j+L-1)){
      vl res;
      ll cx=i,cy=j;
      while(cx||cy){
        fo(k,4){
          ll nx=cx+dx[k],ny=cy+dy[k];
          if(!in(0,nx,H)||!in(0,ny,W))continue;
          if(s[nx][ny])continue;
          if(dist1[nx][ny]+1==dist1[cx][cy]){
            cx=nx,cy=ny;
            res.eb((k+2)%4);
            break;
          }
        }
      }
      rv(res);

      while(len(res)<R){
        if(safe[i][j]==1)res.eb(0),res.eb(2);
        if(safe[i][j]==2)res.eb(1),res.eb(3);
      }

      cx=i,cy=j;
      while(cx!=H-1||cy!=W-1){
        fo(k,4){
          ll nx=cx+dx[k],ny=cy+dy[k];
          if(!in(0,nx,H)||!in(0,ny,W))continue;
          if(s[nx][ny])continue;
          if(dist2[nx][ny]+1==dist2[cx][cy]){
            cx=nx,cy=ny;
            res.eb(k);
            break;
          }
        }

      }

      fo(k,4){
        ll nx=H-1+dx[k],ny=W-1+dy[k];
        if(!in(0,nx,H)||!in(0,ny,W))continue;
        if(s[nx][ny])continue;
        while(len(res)<K)res.eb(k),res.eb((k+2)%4);
        break;
      }

      pp(yes(1));
      done(res.de("ULDR"));
    }
  }
  pp(no());
}
0