結果

問題 No.2413 Multiple of 99
ユーザー chineristACchineristAC
提出日時 2023-08-12 02:19:28
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 3,734 ms / 8,000 ms
コード長 7,961 bytes
コンパイル時間 161 ms
コンパイル使用メモリ 82,252 KB
実行使用メモリ 275,480 KB
最終ジャッジ日時 2024-11-18 22:30:35
合計ジャッジ時間 44,249 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 132 ms
85,504 KB
testcase_01 AC 132 ms
85,760 KB
testcase_02 AC 139 ms
94,848 KB
testcase_03 AC 119 ms
85,352 KB
testcase_04 AC 251 ms
103,416 KB
testcase_05 AC 340 ms
109,464 KB
testcase_06 AC 314 ms
107,620 KB
testcase_07 AC 3,615 ms
270,004 KB
testcase_08 AC 121 ms
85,248 KB
testcase_09 AC 3,237 ms
273,244 KB
testcase_10 AC 3,644 ms
269,876 KB
testcase_11 AC 3,675 ms
274,324 KB
testcase_12 AC 3,640 ms
270,132 KB
testcase_13 AC 3,677 ms
270,000 KB
testcase_14 AC 3,734 ms
269,880 KB
testcase_15 AC 3,625 ms
269,868 KB
testcase_16 AC 1,918 ms
253,880 KB
testcase_17 AC 1,889 ms
254,564 KB
testcase_18 AC 3,535 ms
275,480 KB
testcase_19 AC 419 ms
125,168 KB
testcase_20 AC 335 ms
109,864 KB
testcase_21 AC 434 ms
124,592 KB
testcase_22 AC 3,567 ms
270,136 KB
testcase_23 AC 633 ms
145,972 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

mod = 998244353

N = 10**6
g1 = [1] * (N+1)
g2 = [1] * (N+1)
inverse = [1] * (N+1)
for n in range(2,N+1):
    g1[n] = g1[n-1] * n % mod
    inverse[n] = -inverse[mod%n] * (mod//n) % mod
    g2[n] = inverse[n] * g2[n-1] % mod

pre_pow = [[pow(d,e,mod) for e in range(100)] for d in range(11)]

def comb(n,r):
    if r < 0 or n < r:
        return 0
    return g1[n] * (g2[r] * g2[n-r]) % mod

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
 
 
def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2
 
 
def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2
 
 
def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans
 
 
def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by
 
    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
 
    It returns an empty list if at least one of a and b are empty.
 
    Constraints
    -----------
 
    >   len(a) + len(b) <= 8388609
 
    Complexity
    ----------
 
    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

N,K = map(int,input().split())

a,b = (N+1)//2,N//2

A = [0] * (9*a+1)
A[0] = 1
for n in range(1,9*a+1):
    for i in range(max(0,n-9),n):
        A[n] += A[i] * (n-i) % mod
        A[n] %= mod
    A[n] = A[n] * a % mod
    for i in range(1,min(n,10)):
        A[n] -= (n-i) * A[n-i]
        A[n] %= mod
    A[n] = A[n] * inverse[n] % mod

B = [0] * (9*b+1)
B[0] = 1
for n in range(1,9*b+1):
    for i in range(max(0,n-9),n):
        B[n] += B[i] * (n-i) % mod
        B[n] %= mod
    B[n] = B[n] * b % mod
    for i in range(1,min(n,10)):
        B[n] -= (n-i) * B[n-i]
        B[n] %= mod
    B[n] = B[n] * inverse[n] % mod

ans = 0
for r in range(11):
    f = [0] * (9*a+1)
    g = [0] * (9*b+1)
    for s in range((-10*r)%11,9*a+1,11):
        f[s] = A[s]
    for t in range(r,9*b+1,11):
        g[t] = B[t]
    h = convolution(f,g)
    for i in range(0,9*N+1,9):
        ans += h[i] * pow(i,K,mod) % mod
        ans %= mod

print(ans)
0