結果
| 問題 |
No.2413 Multiple of 99
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-08-12 02:19:28 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 3,734 ms / 8,000 ms |
| コード長 | 7,961 bytes |
| コンパイル時間 | 161 ms |
| コンパイル使用メモリ | 82,252 KB |
| 実行使用メモリ | 275,480 KB |
| 最終ジャッジ日時 | 2024-11-18 22:30:35 |
| 合計ジャッジ時間 | 44,249 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
mod = 998244353
N = 10**6
g1 = [1] * (N+1)
g2 = [1] * (N+1)
inverse = [1] * (N+1)
for n in range(2,N+1):
g1[n] = g1[n-1] * n % mod
inverse[n] = -inverse[mod%n] * (mod//n) % mod
g2[n] = inverse[n] * g2[n-1] % mod
pre_pow = [[pow(d,e,mod) for e in range(100)] for d in range(11)]
def comb(n,r):
if r < 0 or n < r:
return 0
return g1[n] * (g2[r] * g2[n-r]) % mod
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
def _butterfly(a):
n = len(a)
h = (n - 1).bit_length()
len_ = 0
while len_ < h:
if h - len_ == 1:
p = 1 << (h - len_ - 1)
rot = 1
for s in range(1 << len_):
offset = s << (h - len_)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p] * rot % _fft_mod
a[i + offset] = (l + r) % _fft_mod
a[i + offset + p] = (l - r) % _fft_mod
if s + 1 != (1 << len_):
rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
rot %= _fft_mod
len_ += 1
else:
p = 1 << (h - len_ - 2)
rot = 1
for s in range(1 << len_):
rot2 = rot * rot % _fft_mod
rot3 = rot2 * rot % _fft_mod
offset = s << (h - len_)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
if s + 1 != (1 << len_):
rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
rot %= _fft_mod
len_ += 2
def _butterfly_inv(a):
n = len(a)
h = (n - 1).bit_length()
len_ = h
while len_:
if len_ == 1:
p = 1 << (h - len_)
irot = 1
for s in range(1 << (len_ - 1)):
offset = s << (h - len_ + 1)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p]
a[i + offset] = (l + r) % _fft_mod
a[i + offset + p] = (l - r) * irot % _fft_mod
if s + 1 != (1 << (len_ - 1)):
irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
irot %= _fft_mod
len_ -= 1
else:
p = 1 << (h - len_)
irot = 1
for s in range(1 << (len_ - 2)):
irot2 = irot * irot % _fft_mod
irot3 = irot2 * irot % _fft_mod
offset = s << (h - len_ + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
a[i + offset + p] = (a0 - a1 +
a2na3iimag) * irot % _fft_mod
a[i + offset + p * 2] = (a0 + a1 -
a2 - a3) * irot2 % _fft_mod
a[i + offset + p * 3] = (a0 - a1 -
a2na3iimag) * irot3 % _fft_mod
if s + 1 != (1 << (len_ - 1)):
irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
irot %= _fft_mod
len_ -= 2
def _convolution_naive(a, b):
n = len(a)
m = len(b)
ans = [0] * (n + m - 1)
if n < m:
for j in range(m):
for i in range(n):
ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
else:
for i in range(n):
for j in range(m):
ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
return ans
def _convolution_fft(a, b):
a = a.copy()
b = b.copy()
n = len(a)
m = len(b)
z = 1 << (n + m - 2).bit_length()
a += [0] * (z - n)
_butterfly(a)
b += [0] * (z - m)
_butterfly(b)
for i in range(z):
a[i] = a[i] * b[i] % _fft_mod
_butterfly_inv(a)
a = a[:n + m - 1]
iz = pow(z, _fft_mod - 2, _fft_mod)
for i in range(n + m - 1):
a[i] = a[i] * iz % _fft_mod
return a
def _convolution_square(a):
a = a.copy()
n = len(a)
z = 1 << (2 * n - 2).bit_length()
a += [0] * (z - n)
_butterfly(a)
for i in range(z):
a[i] = a[i] * a[i] % _fft_mod
_butterfly_inv(a)
a = a[:2 * n - 1]
iz = pow(z, _fft_mod - 2, _fft_mod)
for i in range(2 * n - 1):
a[i] = a[i] * iz % _fft_mod
return a
def convolution(a, b):
"""It calculates (+, x) convolution in mod 998244353.
Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1],
it calculates the array c of length n + m - 1, defined by
> c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
It returns an empty list if at least one of a and b are empty.
Constraints
-----------
> len(a) + len(b) <= 8388609
Complexity
----------
> O(n log n), where n = len(a) + len(b).
"""
n = len(a)
m = len(b)
if n == 0 or m == 0:
return []
if min(n, m) <= 0:
return _convolution_naive(a, b)
if a is b:
return _convolution_square(a)
return _convolution_fft(a, b)
N,K = map(int,input().split())
a,b = (N+1)//2,N//2
A = [0] * (9*a+1)
A[0] = 1
for n in range(1,9*a+1):
for i in range(max(0,n-9),n):
A[n] += A[i] * (n-i) % mod
A[n] %= mod
A[n] = A[n] * a % mod
for i in range(1,min(n,10)):
A[n] -= (n-i) * A[n-i]
A[n] %= mod
A[n] = A[n] * inverse[n] % mod
B = [0] * (9*b+1)
B[0] = 1
for n in range(1,9*b+1):
for i in range(max(0,n-9),n):
B[n] += B[i] * (n-i) % mod
B[n] %= mod
B[n] = B[n] * b % mod
for i in range(1,min(n,10)):
B[n] -= (n-i) * B[n-i]
B[n] %= mod
B[n] = B[n] * inverse[n] % mod
ans = 0
for r in range(11):
f = [0] * (9*a+1)
g = [0] * (9*b+1)
for s in range((-10*r)%11,9*a+1,11):
f[s] = A[s]
for t in range(r,9*b+1,11):
g[t] = B[t]
h = convolution(f,g)
for i in range(0,9*N+1,9):
ans += h[i] * pow(i,K,mod) % mod
ans %= mod
print(ans)