結果
問題 | No.2413 Multiple of 99 |
ユーザー | chineristAC |
提出日時 | 2023-08-12 02:19:28 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 3,734 ms / 8,000 ms |
コード長 | 7,961 bytes |
コンパイル時間 | 161 ms |
コンパイル使用メモリ | 82,252 KB |
実行使用メモリ | 275,480 KB |
最終ジャッジ日時 | 2024-11-18 22:30:35 |
合計ジャッジ時間 | 44,249 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 132 ms
85,504 KB |
testcase_01 | AC | 132 ms
85,760 KB |
testcase_02 | AC | 139 ms
94,848 KB |
testcase_03 | AC | 119 ms
85,352 KB |
testcase_04 | AC | 251 ms
103,416 KB |
testcase_05 | AC | 340 ms
109,464 KB |
testcase_06 | AC | 314 ms
107,620 KB |
testcase_07 | AC | 3,615 ms
270,004 KB |
testcase_08 | AC | 121 ms
85,248 KB |
testcase_09 | AC | 3,237 ms
273,244 KB |
testcase_10 | AC | 3,644 ms
269,876 KB |
testcase_11 | AC | 3,675 ms
274,324 KB |
testcase_12 | AC | 3,640 ms
270,132 KB |
testcase_13 | AC | 3,677 ms
270,000 KB |
testcase_14 | AC | 3,734 ms
269,880 KB |
testcase_15 | AC | 3,625 ms
269,868 KB |
testcase_16 | AC | 1,918 ms
253,880 KB |
testcase_17 | AC | 1,889 ms
254,564 KB |
testcase_18 | AC | 3,535 ms
275,480 KB |
testcase_19 | AC | 419 ms
125,168 KB |
testcase_20 | AC | 335 ms
109,864 KB |
testcase_21 | AC | 434 ms
124,592 KB |
testcase_22 | AC | 3,567 ms
270,136 KB |
testcase_23 | AC | 633 ms
145,972 KB |
ソースコード
mod = 998244353 N = 10**6 g1 = [1] * (N+1) g2 = [1] * (N+1) inverse = [1] * (N+1) for n in range(2,N+1): g1[n] = g1[n-1] * n % mod inverse[n] = -inverse[mod%n] * (mod//n) % mod g2[n] = inverse[n] * g2[n-1] % mod pre_pow = [[pow(d,e,mod) for e in range(100)] for d in range(11)] def comb(n,r): if r < 0 or n < r: return 0 return g1[n] * (g2[r] * g2[n-r]) % mod mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) _fft_mod = 998244353 _fft_imag = 911660635 _fft_iimag = 86583718 _fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) _fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) _fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) _fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def _butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % _fft_mod a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate2[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % _fft_mod rot3 = rot2 * rot % _fft_mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % _fft_mod * _fft_imag a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate3[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 2 def _butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) * irot % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate2[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % _fft_mod irot3 = irot2 * irot % _fft_mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % _fft_mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % _fft_mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate3[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 2 def _convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod return ans def _convolution_fft(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) _butterfly(a) b += [0] * (z - m) _butterfly(b) for i in range(z): a[i] = a[i] * b[i] % _fft_mod _butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(n + m - 1): a[i] = a[i] * iz % _fft_mod return a def _convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) _butterfly(a) for i in range(z): a[i] = a[i] * a[i] % _fft_mod _butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(2 * n - 1): a[i] = a[i] * iz % _fft_mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Constraints ----------- > len(a) + len(b) <= 8388609 Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 0: return _convolution_naive(a, b) if a is b: return _convolution_square(a) return _convolution_fft(a, b) N,K = map(int,input().split()) a,b = (N+1)//2,N//2 A = [0] * (9*a+1) A[0] = 1 for n in range(1,9*a+1): for i in range(max(0,n-9),n): A[n] += A[i] * (n-i) % mod A[n] %= mod A[n] = A[n] * a % mod for i in range(1,min(n,10)): A[n] -= (n-i) * A[n-i] A[n] %= mod A[n] = A[n] * inverse[n] % mod B = [0] * (9*b+1) B[0] = 1 for n in range(1,9*b+1): for i in range(max(0,n-9),n): B[n] += B[i] * (n-i) % mod B[n] %= mod B[n] = B[n] * b % mod for i in range(1,min(n,10)): B[n] -= (n-i) * B[n-i] B[n] %= mod B[n] = B[n] * inverse[n] % mod ans = 0 for r in range(11): f = [0] * (9*a+1) g = [0] * (9*b+1) for s in range((-10*r)%11,9*a+1,11): f[s] = A[s] for t in range(r,9*b+1,11): g[t] = B[t] h = convolution(f,g) for i in range(0,9*N+1,9): ans += h[i] * pow(i,K,mod) % mod ans %= mod print(ans)