結果
| 問題 |
No.2413 Multiple of 99
|
| コンテスト | |
| ユーザー |
hiromi_ayase
|
| 提出日時 | 2023-08-12 04:50:36 |
| 言語 | Java (openjdk 23) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 14,409 bytes |
| コンパイル時間 | 2,634 ms |
| コンパイル使用メモリ | 91,536 KB |
| 実行使用メモリ | 229,992 KB |
| 最終ジャッジ日時 | 2024-11-19 01:58:18 |
| 合計ジャッジ時間 | 145,113 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 8 TLE * 13 |
ソースコード
import java.util.*;
import java.util.function.BiFunction;
import java.io.*;
@SuppressWarnings("unused")
public class Main {
private static class Convolution {
/**
* Find a primitive root.
*
* @param m A prime number.
* @return Primitive root.
*/
private static int primitiveRoot(int m) {
if (m == 2)
return 1;
if (m == 167772161)
return 3;
if (m == 469762049)
return 3;
if (m == 754974721)
return 11;
if (m == 998244353)
return 3;
int[] divs = new int[20];
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long) (i) * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
boolean ok = true;
for (int i = 0; i < cnt; i++) {
if (pow(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok)
return g;
}
}
/**
* Power.
*
* @param x Parameter x.
* @param n Parameter n.
* @param m Mod.
* @return n-th power of x mod m.
*/
private static long pow(long x, long n, int m) {
if (m == 1)
return 0;
long r = 1;
long y = x % m;
while (n > 0) {
if ((n & 1) != 0)
r = (r * y) % m;
y = (y * y) % m;
n >>= 1;
}
return r;
}
/**
* Ceil of power 2.
*
* @param n Value.
* @return Ceil of power 2.
*/
private static int ceilPow2(int n) {
int x = 0;
while ((1L << x) < n)
x++;
return x;
}
/**
* Garner's algorithm.
*
* @param c Mod convolution results.
* @param mods Mods.
* @return Result.
*/
private static long garner(long[] c, int[] mods) {
int n = c.length + 1;
long[] cnst = new long[n];
long[] coef = new long[n];
java.util.Arrays.fill(coef, 1);
for (int i = 0; i < n - 1; i++) {
int m1 = mods[i];
long v = (c[i] - cnst[i] + m1) % m1;
v = v * pow(coef[i], m1 - 2, m1) % m1;
for (int j = i + 1; j < n; j++) {
long m2 = mods[j];
cnst[j] = (cnst[j] + coef[j] * v) % m2;
coef[j] = (coef[j] * m1) % m2;
}
}
return cnst[n - 1];
}
/**
* Pre-calculation for NTT.
*
* @param mod NTT Prime.
* @param g Primitive root of mod.
* @return Pre-calculation table.
*/
private static long[] sumE(int mod, int g) {
long[] sum_e = new long[30];
long[] es = new long[30];
long[] ies = new long[30];
int cnt2 = Integer.numberOfTrailingZeros(mod - 1);
long e = pow(g, (mod - 1) >> cnt2, mod);
long ie = pow(e, mod - 2, mod);
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e = e * e % mod;
ie = ie * ie % mod;
}
long now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now % mod;
now = now * ies[i] % mod;
}
return sum_e;
}
/**
* Pre-calculation for inverse NTT.
*
* @param mod Mod.
* @param g Primitive root of mod.
* @return Pre-calculation table.
*/
private static long[] sumIE(int mod, int g) {
long[] sum_ie = new long[30];
long[] es = new long[30];
long[] ies = new long[30];
int cnt2 = Integer.numberOfTrailingZeros(mod - 1);
long e = pow(g, (mod - 1) >> cnt2, mod);
long ie = pow(e, mod - 2, mod);
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e = e * e % mod;
ie = ie * ie % mod;
}
long now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now % mod;
now = now * es[i] % mod;
}
return sum_ie;
}
/**
* Inverse NTT.
*
* @param a Target array.
* @param sumIE Pre-calculation table.
* @param mod NTT Prime.
*/
private static void butterflyInv(long[] a, long[] sumIE, int mod) {
int n = a.length;
int h = ceilPow2(n);
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
long inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
long l = a[i + offset];
long r = a[i + offset + p];
a[i + offset] = (l + r) % mod;
a[i + offset + p] = (mod + l - r) * inow % mod;
}
int x = Integer.numberOfTrailingZeros(~s);
inow = inow * sumIE[x] % mod;
}
}
}
/**
* Inverse NTT.
*
* @param a Target array.
* @param sumE Pre-calculation table.
* @param mod NTT Prime.
*/
private static void butterfly(long[] a, long[] sumE, int mod) {
int n = a.length;
int h = ceilPow2(n);
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
long now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
long l = a[i + offset];
long r = a[i + offset + p] * now % mod;
a[i + offset] = (l + r) % mod;
a[i + offset + p] = (l - r + mod) % mod;
}
int x = Integer.numberOfTrailingZeros(~s);
now = now * sumE[x] % mod;
}
}
}
/**
* Convolution.
*
* @param a Target array 1.
* @param b Target array 2.
* @param mod NTT Prime.
* @return Answer.
*/
public static long[] convolution(long[] a, long[] b, int mod) {
int n = a.length;
int m = b.length;
if (n == 0 || m == 0)
return new long[0];
int z = 1 << ceilPow2(n + m - 1);
{
long[] na = new long[z];
long[] nb = new long[z];
System.arraycopy(a, 0, na, 0, n);
System.arraycopy(b, 0, nb, 0, m);
a = na;
b = nb;
}
int g = primitiveRoot(mod);
long[] sume = sumE(mod, g);
long[] sumie = sumIE(mod, g);
butterfly(a, sume, mod);
butterfly(b, sume, mod);
for (int i = 0; i < z; i++) {
a[i] = a[i] * b[i] % mod;
}
butterflyInv(a, sumie, mod);
a = java.util.Arrays.copyOf(a, n + m - 1);
long iz = pow(z, mod - 2, mod);
for (int i = 0; i < n + m - 1; i++)
a[i] = a[i] * iz % mod;
return a;
}
/**
* Convolution.
*
* @param a Target array 1.
* @param b Target array 2.
* @param mod Any mod.
* @return Answer.
*/
public static long[] convolutionLL(long[] a, long[] b, int mod) {
int n = a.length;
int m = b.length;
if (n == 0 || m == 0)
return new long[0];
int mod1 = 754974721;
int mod2 = 167772161;
int mod3 = 469762049;
long[] c1 = convolution(a, b, mod1);
long[] c2 = convolution(a, b, mod2);
long[] c3 = convolution(a, b, mod3);
int retSize = c1.length;
long[] ret = new long[retSize];
int[] mods = { mod1, mod2, mod3, mod };
for (int i = 0; i < retSize; ++i) {
ret[i] = garner(new long[] { c1[i], c2[i], c3[i] }, mods);
}
return ret;
}
/**
* Naive convolution. (Complexity is O(N^2)!!)
*
* @param a Target array 1.
* @param b Target array 2.
* @param mod Mod.
* @return Answer.
*/
public static long[] convolutionNaive(long[] a, long[] b, int mod) {
int n = a.length;
int m = b.length;
int k = n + m - 1;
long[] ret = new long[k];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ret[i + j] += a[i] * b[j] % mod;
ret[i + j] %= mod;
}
}
return ret;
}
}
static class FPS {
private final int mod;
private final BiFunction<long[], long[], long[]> conv;
public FPS(int mod, BiFunction<long[], long[], long[]> conv) {
this.mod = mod;
this.conv = conv;
}
private long inv(long a) {
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
return p < 0 ? p + mod : p;
}
public long[] mul(long[] f, long[] g) {
return Arrays.copyOf(conv.apply(f, g), f.length);
}
public long[] add(long[] f, long[] g) {
int k = f.length;
long[] ret = new long[k];
for (int i = 0; i < k; i++) {
ret[i] = (f[i] + g[i]) % mod;
}
return ret;
}
public long[] sub(long[] f, long[] g) {
int k = f.length;
long[] ret = new long[k];
for (int i = 0; i < k; i++) {
ret[i] = (f[i] - g[i] + mod) % mod;
}
return ret;
}
private long[] limit(long[] f, long g0, BiFunction<long[], long[], long[]> rec) {
int k = f.length;
long[] g = { g0 };
for (int m = 0; (1 << m) <= k; m++) {
int n = 1 << (m + 1);
long[] fn = new long[n];
long[] gn = new long[n];
for (int j = 0; j < n; j++) {
fn[j] = j < f.length ? f[j] : 0;
gn[j] = j < g.length ? g[j] : 0;
}
g = Arrays.copyOf(rec.apply(fn, gn), n);
}
return Arrays.copyOf(g, k);
}
public long[] inv(long[] f) {
BiFunction<long[], long[], long[]> rec = (fn, gn) -> {
long[] h = mul(fn, gn);
for (int i = 0; i < fn.length; i++) {
h[i] = ((i == 0 ? 2 : 0) + mod - h[i]) % mod;
}
return mul(gn, h);
};
return limit(f, inv(f[0]), rec);
}
public long[] exp(long[] f) {
assert (f[0] == 0);
BiFunction<long[], long[], long[]> rec = (fn, gn) -> {
int n = fn.length;
long[] h = log(gn);
for (int i = 0; i < n; i++) {
h[i] = (fn[i] + (i == 0 ? 1 : 0) + mod - h[i]) % mod;
}
return mul(gn, Arrays.copyOf(h, gn.length));
};
long g0 = 1;
return limit(f, g0, rec);
}
public long[] integral(long[] f) {
int k = f.length;
long[] ret = new long[k];
for (int i = 0; i < k - 1; i++) {
ret[i + 1] = (i < f.length ? f[i] : 0) * inv(i + 1) % mod;
}
return ret;
}
public long[] differential(long[] f) {
int k = f.length;
long[] ret = new long[k];
for (int i = 1; i < k; i++) {
ret[i - 1] = (i < f.length ? f[i] : 0) * i % mod;
}
return ret;
}
public long[] log(long[] f) {
assert (f[0] == 1);
return integral(mul(differential(f), inv(f)));
}
public long[] pow(long[] f, long n) {
long[] log = log(f);
for (int i = 0; i < f.length; i++) {
log[i] = log[i] * n % mod;
}
return exp(log);
}
public long[] powNotLog(long[] f, long n) {
long ans[] = new long[f.length];
ans[0] = 1;
while (n > 0) {
if (n % 2 == 1)
ans = mul(ans, f);
ans = mul(ans, ans);
n /= 2;
}
return ans;
}
}
private static void solve() {
int n = ni();
int k = ni();
int max = n * 9 + 1;
long[] o = f((n + 1) / 2, max);
long[] e = f(n / 2, max);
long[] ret = new long[max];
for (int i = 0; i < 11; i++) {
long[] co = Arrays.copyOf(o, max);
long[] ce = Arrays.copyOf(e, max);
for (int j = 0; j < max; j++) {
if (j % 11 != i) {
co[j] = 0;
ce[j] = 0;
}
}
long[] cur = Convolution.convolution(co, ce, mod);
for (int j = 0; j < max; j ++) {
ret[j] = (ret[j] + cur[j]) % mod;
}
}
long ans = 0;
for (int i = 0; i <= n * 9; i += 9) {
ans += pow(i, k, mod) * ret[i];
ans %= mod;
}
System.out.println(ans);
}
public static long pow(long x, long n, long m){
assert(n >= 0 && m >= 1);
long ans = 1;
while(n > 0){
if(n%2==1) ans = (ans * x) % m;
x = (x*x) % m;
n /= 2;
}
return ans;
}
private static final int mod = 998244353;
private static long[] f(int n, int max) {
FPS fps = new FPS(mod, (o1, o2) -> Convolution.convolution(o1, o2, mod));
long[] f = new long[max];
for (int i = 0; i < 10; i++) {
f[i] = 1;
}
return fps.pow(f, n);
}
public static void main(String[] args) {
new Thread(null, new Runnable() {
@Override
public void run() {
solve();
out.flush();
}
}, "", 64000000).start();
}
private static PrintWriter out = new PrintWriter(System.out);
private static StringTokenizer tokenizer = null;
private static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in), 32768);
public static String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new java.util.StringTokenizer(reader.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
private static double nd() {
return Double.parseDouble(next());
}
private static long nl() {
return Long.parseLong(next());
}
private static int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private static char[] ns() {
return next().toCharArray();
}
private static long[] nal(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
private static int[][] ntable(int n, int m) {
int[][] table = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
table[i][j] = ni();
}
}
return table;
}
private static int[][] nlist(int n, int m) {
int[][] table = new int[m][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
table[j][i] = ni();
}
}
return table;
}
private static int ni() {
return Integer.parseInt(next());
}
}
hiromi_ayase