結果

問題 No.2421 entersys?
ユーザー drken1215
提出日時 2023-08-12 14:20:10
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 522 ms / 3,000 ms
コード長 14,861 bytes
コンパイル時間 2,373 ms
コンパイル使用メモリ 226,988 KB
最終ジャッジ日時 2025-02-16 04:35:55
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using pint = pair<int, int>;
using pll = pair<long long, long long>;
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
#define REP(i, n) for (long long i = 0; i < (long long)(n); ++i)
#define REP2(i, a, b) for (long long i = a; i < (long long)(b); ++i)
#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl
template<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)
{ return s << '<' << P.first << ", " << P.second << '>'; }
template<class T> ostream& operator << (ostream &s, vector<T> P)
{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }
template<class T> ostream& operator << (ostream &s, deque<T> P)
{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }
template<class T> ostream& operator << (ostream &s, vector<vector<T> > P)
{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }
template<class T> ostream& operator << (ostream &s, set<T> P)
{ for(auto it : P) { s << "<" << it << "> "; } return s; }
template<class T> ostream& operator << (ostream &s, multiset<T> P)
{ for(auto it : P) { s << "<" << it << "> "; } return s; }
template<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)
{ for(auto it : P) { s << "<" << it.first << "->" << it.second << "> "; } return s; }
/*///////////////////////////////////////////////////////*/
// Union-Find, modint, segtree, lazy segtree
/*///////////////////////////////////////////////////////*/
// 4-neighbor (or 8-neighbor)
const vector<int> dx = {1, 0, -1, 0, 1, -1, 1, -1};
const vector<int> dy = {0, 1, 0, -1, 1, 1, -1, -1};
// Union-Find
struct UnionFind {
// core member
vector<int> par;
// constructor
UnionFind() { }
UnionFind(int n) : par(n, -1) { }
void init(int n) { par.assign(n, -1); }
// core methods
int root(int x) {
if (par[x] < 0) return x;
else return par[x] = root(par[x]);
}
bool same(int x, int y) {
return root(x) == root(y);
}
bool merge(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x, y); // merge technique
par[x] += par[y];
par[y] = x;
return true;
}
int size(int x) {
return -par[root(x)];
}
// debug
friend ostream& operator << (ostream &s, UnionFind uf) {
map<int, vector<int>> groups;
for (int i = 0; i < uf.par.size(); ++i) {
int r = uf.root(i);
groups[r].push_back(i);
}
for (const auto &it : groups) {
s << "group: ";
for (auto v : it.second) s << v << " ";
s << endl;
}
return s;
}
};
// modint
template<int MOD> struct Fp {
// inner value
long long val;
// constructor
constexpr Fp() noexcept : val(0) { }
constexpr Fp(long long v) noexcept : val(v % MOD) {
if (val < 0) val += MOD;
}
constexpr long long get() const noexcept { return val; }
constexpr int get_mod() const noexcept { return MOD; }
// arithmetic operators
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp &r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp &r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp &r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp &r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp &r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp &r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp &r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp &r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp pow(long long n) const noexcept {
Fp res(1), mul(*this);
while (n > 0) {
if (n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
constexpr Fp inv() const noexcept {
Fp res(1), div(*this);
return res / div;
}
// other operators
constexpr bool operator == (const Fp &r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp &r) const noexcept {
return this->val != r.val;
}
friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) noexcept {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD> &r, long long n) noexcept {
return r.pow(n);
}
friend constexpr Fp<MOD> modinv(const Fp<MOD> &r) noexcept {
return r.inv();
}
};
// Binomial coefficient
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].get_mod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
// Segment Tree
template<class Monoid> struct SegTree {
using Func = function<Monoid(Monoid, Monoid)>;
// core member
int SIZE;
Func F;
Monoid IDENTITY;
// data
int offset;
vector<Monoid> dat;
// constructor
SegTree() {}
SegTree(int n, const Func &f, const Monoid &identity)
: SIZE(n), F(f), IDENTITY(identity) {
offset = 1;
while (offset < n) offset *= 2;
dat.assign(offset * 2, IDENTITY);
}
void init(int n, const Func &f, const Monoid &identity) {
SIZE = n;
F = f;
IDENTITY = identity;
offset = 1;
while (offset < n) offset *= 2;
dat.assign(offset * 2, IDENTITY);
}
int size() const { return SIZE; }
// set, a is 0-indexed //
// build(): O(N)
void set(int a, const Monoid &v) { dat[a + offset] = v; }
void build() {
for (int k = offset - 1; k > 0; --k)
dat[k] = F(dat[k*2], dat[k*2+1]);
}
void build(const vector<Monoid> &vec) {
for (int a = 0; a < vec.size() && a + offset < dat.size(); ++a)
set(a, vec[a]);
build();
}
// update a, a is 0-indexed, O(log N)
void update(int a, const Monoid &v) {
int k = a + offset;
dat[k] = v;
while (k >>= 1) dat[k] = F(dat[k*2], dat[k*2+1]);
}
// get [a, b), a and b are 0-indexed, O(log N)
Monoid get(int a, int b) {
Monoid vleft = IDENTITY, vright = IDENTITY;
for (int left = a + offset, right = b + offset; left < right;
left >>= 1, right >>= 1) {
if (left & 1) vleft = F(vleft, dat[left++]);
if (right & 1) vright = F(dat[--right], vright);
}
return F(vleft, vright);
}
Monoid get_all() { return dat[1]; }
Monoid operator [] (int a) const { return dat[a + offset]; }
// get max r that f(get(l, r)) = True (0-indexed), O(log N)
// f(IDENTITY) need to be True
int max_right(const function<bool(Monoid)> f, int l = 0) {
if (l == SIZE) return SIZE;
l += offset;
Monoid sum = IDENTITY;
do {
while (l % 2 == 0) l >>= 1;
if (!f(F(sum, dat[l]))) {
while (l < offset) {
l = l * 2;
if (f(F(sum, dat[l]))) {
sum = F(sum, dat[l]);
++l;
}
}
return l - offset;
}
sum = F(sum, dat[l]);
++l;
} while ((l & -l) != l); // stop if l = 2^e
return SIZE;
}
// get min l that f(get(l, r)) = True (0-indexed), O(log N)
// f(IDENTITY) need to be True
int min_left(const function<bool(Monoid)> f, int r = -1) {
if (r == 0) return 0;
if (r == -1) r = SIZE;
r += offset;
Monoid sum = IDENTITY;
do {
--r;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(F(dat[r], sum))) {
while (r < offset) {
r = r * 2 + 1;
if (f(F(dat[r], sum))) {
sum = F(dat[r], sum);
--r;
}
}
return r + 1 - offset;
}
sum = F(dat[r], sum);
} while ((r & -r) != r);
return 0;
}
// debug
friend ostream& operator << (ostream &s, const SegTree &seg) {
for (int i = 0; i < seg.size(); ++i) {
s << seg[i];
if (i != seg.size()-1) s << " ";
}
return s;
}
};
vector<long long> calc_divisor(long long n) {
vector<long long> res;
for (long long i = 1LL; i*i <= n; ++i) {
if (n % i == 0) {
res.push_back(i);
long long j = n / i;
if (j != i) res.push_back(j);
}
}
sort(res.begin(), res.end());
return res;
}
template <class Abel> struct BIT {
Abel UNITY_SUM = 0;
vector<Abel> dat[2];
// [0, n)
BIT(int n, Abel unity = 0) : UNITY_SUM(unity) {
init(n);
}
void init(int n) {
for (int iter = 0; iter < 2; ++iter)
dat[iter].assign(n + 1, UNITY_SUM);
}
// [a, b), a and b are 0-indexed
inline void sub_add(int p, int a, Abel x) {
for (int i = a; i < (int)dat[p].size(); i |= i + 1)
dat[p][i] = dat[p][i] + x;
}
inline void add(int a, int b, Abel x) {
sub_add(0, a, x * (-a));
sub_add(1, a, x);
sub_add(0, b, x * b);
sub_add(1, b, x * (-1));
}
// [a, b), a and b are 0-indexed
inline Abel sub_sum(int p, int a) {
Abel res = UNITY_SUM;
for (int i = a - 1; i >= 0; i = (i & (i + 1)) - 1)
res = res + dat[p][i];
return res;
}
inline Abel sum(int a, int b) {
return sub_sum(0, b)
+ sub_sum(1, b) * b
- sub_sum(0, a)
- sub_sum(1, a) * a;
}
// debug
void print() {
for (int i = 0; i < (int)dat[0].size(); ++i)
cout << sum(i, i + 1) << ",";
cout << endl;
}
};
int main() {
int N, Q;
cin >> N;
vector<long long> alts;
map<string, set<pll>> xs;
vector<string> X(N);
vector<long long> L(N), R(N);
for (int i = 0; i < N; ++i) {
cin >> X[i] >> L[i] >> R[i];
++R[i];
xs[X[i]].insert(pll(L[i], R[i]));
alts.push_back(L[i]), alts.push_back(R[i]);
}
//
cin >> Q;
vector<int> types(Q), tq(Q), lq(Q), rq(Q);
vector<string> xq(Q);
for (int i = 0; i < Q; ++i) {
cin >> types[i];
if (types[i] == 1) {
cin >> xq[i] >> tq[i];
} else if (types[i] == 2) {
cin >> tq[i];
alts.push_back(tq[i]);
} else {
cin >> xq[i] >> lq[i] >> rq[i];
++rq[i];
alts.push_back(lq[i]), alts.push_back(rq[i]);
}
}
//
sort(alts.begin(), alts.end());
alts.erase(unique(alts.begin(), alts.end()), alts.end());
// BIT
BIT<long long> bit(alts.size()+10, 0);
for (int i = 0; i < N; ++i) {
int l = lower_bound(alts.begin(), alts.end(), L[i]) - alts.begin();
int r = lower_bound(alts.begin(), alts.end(), R[i]) - alts.begin();
bit.add(l, r, 1);
}
//
for (int q = 0; q < Q; ++q) {
if (types[q] == 1) {
string x = xq[q];
auto it = xs[x].upper_bound(pll(tq[q], 1LL<<60));
if (it == xs[x].begin()) cout << "No" << endl;
else {
--it;
auto [l, r] = *it;
if (l <= tq[q] && tq[q] < r) cout << "Yes" << endl;
else cout << "No" << endl;
}
} else if (types[q] == 2) {
int t = lower_bound(alts.begin(), alts.end(), tq[q]) - alts.begin();
cout << bit.sum(t, t+1) << endl;
} else {
string x = xq[q];
xs[x].insert(pll(lq[q], rq[q]));
int l = lower_bound(alts.begin(), alts.end(), lq[q]) - alts.begin();
int r = lower_bound(alts.begin(), alts.end(), rq[q]) - alts.begin();
bit.add(l, r, 1);
}
}
}
/*
void solve() {
long long A, B;
cin >> A >> B;
auto judge = [&](long long x) -> bool {
return (A + B < x * x
&& A * B * 4 < (x * x - A - B) * (x * x - A - B));
};
long long alt = (long long)(sqrt(A)) + (long long)(sqrt(B));
long long res = 0;
for (res = max(alt - 100, 0LL);; ++res) {
if (judge(res)) break;
}
cout << res << endl;
}
int main() {
int T;
cin >> T;
while (T--) {
solve();
}
}
*/
/*
int main() {
string S;
cin >> S;
int N = S.size();
vector<vector<long long>> sum(26, vector<long long>(N+1, 0));
for (int i = 0; i < N; ++i) {
int c = S[i] - 'A';
for (int j = 0; j < 26; ++j) {
sum[j][i+1] = sum[j][i] + (j == c);
}
}
long long res = 0;
for (int i = 0; i < N; ++i) {
int c = S[i] - 'A';
long long left = sum[c][i];
long long right = (N - i - 1) - (sum[c][N] - sum[c][i+1]);
res += left * right;
}
cout << res << endl;
}
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0