結果
問題 | No.2421 entersys? |
ユーザー | drken1215 |
提出日時 | 2023-08-12 14:20:10 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 649 ms / 3,000 ms |
コード長 | 14,861 bytes |
コンパイル時間 | 2,918 ms |
コンパイル使用メモリ | 237,192 KB |
実行使用メモリ | 43,636 KB |
最終ジャッジ日時 | 2024-11-19 18:41:07 |
合計ジャッジ時間 | 15,314 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 4 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 5 ms
5,248 KB |
testcase_06 | AC | 4 ms
5,248 KB |
testcase_07 | AC | 4 ms
5,248 KB |
testcase_08 | AC | 4 ms
5,248 KB |
testcase_09 | AC | 7 ms
5,248 KB |
testcase_10 | AC | 4 ms
5,248 KB |
testcase_11 | AC | 611 ms
32,428 KB |
testcase_12 | AC | 587 ms
32,444 KB |
testcase_13 | AC | 584 ms
32,432 KB |
testcase_14 | AC | 594 ms
32,440 KB |
testcase_15 | AC | 585 ms
32,444 KB |
testcase_16 | AC | 618 ms
35,540 KB |
testcase_17 | AC | 618 ms
35,668 KB |
testcase_18 | AC | 612 ms
35,536 KB |
testcase_19 | AC | 608 ms
35,672 KB |
testcase_20 | AC | 596 ms
35,660 KB |
testcase_21 | AC | 612 ms
31,396 KB |
testcase_22 | AC | 519 ms
31,456 KB |
testcase_23 | AC | 635 ms
43,636 KB |
testcase_24 | AC | 649 ms
43,612 KB |
testcase_25 | AC | 647 ms
43,560 KB |
testcase_26 | AC | 483 ms
23,724 KB |
testcase_27 | AC | 483 ms
23,592 KB |
testcase_28 | AC | 490 ms
23,588 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using pint = pair<int, int>; using pll = pair<long long, long long>; template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } #define REP(i, n) for (long long i = 0; i < (long long)(n); ++i) #define REP2(i, a, b) for (long long i = a; i < (long long)(b); ++i) #define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl template<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P) { return s << '<' << P.first << ", " << P.second << '>'; } template<class T> ostream& operator << (ostream &s, vector<T> P) { for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; } template<class T> ostream& operator << (ostream &s, deque<T> P) { for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; } template<class T> ostream& operator << (ostream &s, vector<vector<T> > P) { for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; } template<class T> ostream& operator << (ostream &s, set<T> P) { for(auto it : P) { s << "<" << it << "> "; } return s; } template<class T> ostream& operator << (ostream &s, multiset<T> P) { for(auto it : P) { s << "<" << it << "> "; } return s; } template<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P) { for(auto it : P) { s << "<" << it.first << "->" << it.second << "> "; } return s; } /*///////////////////////////////////////////////////////*/ // Union-Find, modint, segtree, lazy segtree /*///////////////////////////////////////////////////////*/ // 4-neighbor (or 8-neighbor) const vector<int> dx = {1, 0, -1, 0, 1, -1, 1, -1}; const vector<int> dy = {0, 1, 0, -1, 1, 1, -1, -1}; // Union-Find struct UnionFind { // core member vector<int> par; // constructor UnionFind() { } UnionFind(int n) : par(n, -1) { } void init(int n) { par.assign(n, -1); } // core methods int root(int x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } bool same(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x), y = root(y); if (x == y) return false; if (par[x] > par[y]) swap(x, y); // merge technique par[x] += par[y]; par[y] = x; return true; } int size(int x) { return -par[root(x)]; } // debug friend ostream& operator << (ostream &s, UnionFind uf) { map<int, vector<int>> groups; for (int i = 0; i < uf.par.size(); ++i) { int r = uf.root(i); groups[r].push_back(i); } for (const auto &it : groups) { s << "group: "; for (auto v : it.second) s << v << " "; s << endl; } return s; } }; // modint template<int MOD> struct Fp { // inner value long long val; // constructor constexpr Fp() noexcept : val(0) { } constexpr Fp(long long v) noexcept : val(v % MOD) { if (val < 0) val += MOD; } constexpr long long get() const noexcept { return val; } constexpr int get_mod() const noexcept { return MOD; } // arithmetic operators constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; } constexpr Fp operator + (const Fp &r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp &r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp &r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp &r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp &r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp &r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp &r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp &r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp pow(long long n) const noexcept { Fp res(1), mul(*this); while (n > 0) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } constexpr Fp inv() const noexcept { Fp res(1), div(*this); return res / div; } // other operators constexpr bool operator == (const Fp &r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp &r) const noexcept { return this->val != r.val; } friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) noexcept { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) noexcept { return os << x.val; } friend constexpr Fp<MOD> modpow(const Fp<MOD> &r, long long n) noexcept { return r.pow(n); } friend constexpr Fp<MOD> modinv(const Fp<MOD> &r) noexcept { return r.inv(); } }; // Binomial coefficient template<class T> struct BiCoef { vector<T> fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].get_mod(); for(int i = 2; i < n; i++){ fact_[i] = fact_[i-1] * i; inv_[i] = -inv_[MOD%i] * (MOD/i); finv_[i] = finv_[i-1] * inv_[i]; } } constexpr T com(int n, int k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n-k]; } constexpr T fact(int n) const noexcept { if (n < 0) return 0; return fact_[n]; } constexpr T inv(int n) const noexcept { if (n < 0) return 0; return inv_[n]; } constexpr T finv(int n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; // Segment Tree template<class Monoid> struct SegTree { using Func = function<Monoid(Monoid, Monoid)>; // core member int SIZE; Func F; Monoid IDENTITY; // data int offset; vector<Monoid> dat; // constructor SegTree() {} SegTree(int n, const Func &f, const Monoid &identity) : SIZE(n), F(f), IDENTITY(identity) { offset = 1; while (offset < n) offset *= 2; dat.assign(offset * 2, IDENTITY); } void init(int n, const Func &f, const Monoid &identity) { SIZE = n; F = f; IDENTITY = identity; offset = 1; while (offset < n) offset *= 2; dat.assign(offset * 2, IDENTITY); } int size() const { return SIZE; } // set, a is 0-indexed // // build(): O(N) void set(int a, const Monoid &v) { dat[a + offset] = v; } void build() { for (int k = offset - 1; k > 0; --k) dat[k] = F(dat[k*2], dat[k*2+1]); } void build(const vector<Monoid> &vec) { for (int a = 0; a < vec.size() && a + offset < dat.size(); ++a) set(a, vec[a]); build(); } // update a, a is 0-indexed, O(log N) void update(int a, const Monoid &v) { int k = a + offset; dat[k] = v; while (k >>= 1) dat[k] = F(dat[k*2], dat[k*2+1]); } // get [a, b), a and b are 0-indexed, O(log N) Monoid get(int a, int b) { Monoid vleft = IDENTITY, vright = IDENTITY; for (int left = a + offset, right = b + offset; left < right; left >>= 1, right >>= 1) { if (left & 1) vleft = F(vleft, dat[left++]); if (right & 1) vright = F(dat[--right], vright); } return F(vleft, vright); } Monoid get_all() { return dat[1]; } Monoid operator [] (int a) const { return dat[a + offset]; } // get max r that f(get(l, r)) = True (0-indexed), O(log N) // f(IDENTITY) need to be True int max_right(const function<bool(Monoid)> f, int l = 0) { if (l == SIZE) return SIZE; l += offset; Monoid sum = IDENTITY; do { while (l % 2 == 0) l >>= 1; if (!f(F(sum, dat[l]))) { while (l < offset) { l = l * 2; if (f(F(sum, dat[l]))) { sum = F(sum, dat[l]); ++l; } } return l - offset; } sum = F(sum, dat[l]); ++l; } while ((l & -l) != l); // stop if l = 2^e return SIZE; } // get min l that f(get(l, r)) = True (0-indexed), O(log N) // f(IDENTITY) need to be True int min_left(const function<bool(Monoid)> f, int r = -1) { if (r == 0) return 0; if (r == -1) r = SIZE; r += offset; Monoid sum = IDENTITY; do { --r; while (r > 1 && (r % 2)) r >>= 1; if (!f(F(dat[r], sum))) { while (r < offset) { r = r * 2 + 1; if (f(F(dat[r], sum))) { sum = F(dat[r], sum); --r; } } return r + 1 - offset; } sum = F(dat[r], sum); } while ((r & -r) != r); return 0; } // debug friend ostream& operator << (ostream &s, const SegTree &seg) { for (int i = 0; i < seg.size(); ++i) { s << seg[i]; if (i != seg.size()-1) s << " "; } return s; } }; vector<long long> calc_divisor(long long n) { vector<long long> res; for (long long i = 1LL; i*i <= n; ++i) { if (n % i == 0) { res.push_back(i); long long j = n / i; if (j != i) res.push_back(j); } } sort(res.begin(), res.end()); return res; } template <class Abel> struct BIT { Abel UNITY_SUM = 0; vector<Abel> dat[2]; // [0, n) BIT(int n, Abel unity = 0) : UNITY_SUM(unity) { init(n); } void init(int n) { for (int iter = 0; iter < 2; ++iter) dat[iter].assign(n + 1, UNITY_SUM); } // [a, b), a and b are 0-indexed inline void sub_add(int p, int a, Abel x) { for (int i = a; i < (int)dat[p].size(); i |= i + 1) dat[p][i] = dat[p][i] + x; } inline void add(int a, int b, Abel x) { sub_add(0, a, x * (-a)); sub_add(1, a, x); sub_add(0, b, x * b); sub_add(1, b, x * (-1)); } // [a, b), a and b are 0-indexed inline Abel sub_sum(int p, int a) { Abel res = UNITY_SUM; for (int i = a - 1; i >= 0; i = (i & (i + 1)) - 1) res = res + dat[p][i]; return res; } inline Abel sum(int a, int b) { return sub_sum(0, b) + sub_sum(1, b) * b - sub_sum(0, a) - sub_sum(1, a) * a; } // debug void print() { for (int i = 0; i < (int)dat[0].size(); ++i) cout << sum(i, i + 1) << ","; cout << endl; } }; int main() { int N, Q; cin >> N; vector<long long> alts; map<string, set<pll>> xs; vector<string> X(N); vector<long long> L(N), R(N); for (int i = 0; i < N; ++i) { cin >> X[i] >> L[i] >> R[i]; ++R[i]; xs[X[i]].insert(pll(L[i], R[i])); alts.push_back(L[i]), alts.push_back(R[i]); } // クエリ先読み cin >> Q; vector<int> types(Q), tq(Q), lq(Q), rq(Q); vector<string> xq(Q); for (int i = 0; i < Q; ++i) { cin >> types[i]; if (types[i] == 1) { cin >> xq[i] >> tq[i]; } else if (types[i] == 2) { cin >> tq[i]; alts.push_back(tq[i]); } else { cin >> xq[i] >> lq[i] >> rq[i]; ++rq[i]; alts.push_back(lq[i]), alts.push_back(rq[i]); } } // 座標圧縮 sort(alts.begin(), alts.end()); alts.erase(unique(alts.begin(), alts.end()), alts.end()); // BIT BIT<long long> bit(alts.size()+10, 0); for (int i = 0; i < N; ++i) { int l = lower_bound(alts.begin(), alts.end(), L[i]) - alts.begin(); int r = lower_bound(alts.begin(), alts.end(), R[i]) - alts.begin(); bit.add(l, r, 1); } // クエリ処理 for (int q = 0; q < Q; ++q) { if (types[q] == 1) { string x = xq[q]; auto it = xs[x].upper_bound(pll(tq[q], 1LL<<60)); if (it == xs[x].begin()) cout << "No" << endl; else { --it; auto [l, r] = *it; if (l <= tq[q] && tq[q] < r) cout << "Yes" << endl; else cout << "No" << endl; } } else if (types[q] == 2) { int t = lower_bound(alts.begin(), alts.end(), tq[q]) - alts.begin(); cout << bit.sum(t, t+1) << endl; } else { string x = xq[q]; xs[x].insert(pll(lq[q], rq[q])); int l = lower_bound(alts.begin(), alts.end(), lq[q]) - alts.begin(); int r = lower_bound(alts.begin(), alts.end(), rq[q]) - alts.begin(); bit.add(l, r, 1); } } } /* void solve() { long long A, B; cin >> A >> B; auto judge = [&](long long x) -> bool { return (A + B < x * x && A * B * 4 < (x * x - A - B) * (x * x - A - B)); }; long long alt = (long long)(sqrt(A)) + (long long)(sqrt(B)); long long res = 0; for (res = max(alt - 100, 0LL);; ++res) { if (judge(res)) break; } cout << res << endl; } int main() { int T; cin >> T; while (T--) { solve(); } } */ /* int main() { string S; cin >> S; int N = S.size(); vector<vector<long long>> sum(26, vector<long long>(N+1, 0)); for (int i = 0; i < N; ++i) { int c = S[i] - 'A'; for (int j = 0; j < 26; ++j) { sum[j][i+1] = sum[j][i] + (j == c); } } long long res = 0; for (int i = 0; i < N; ++i) { int c = S[i] - 'A'; long long left = sum[c][i]; long long right = (N - i - 1) - (sum[c][N] - sum[c][i+1]); res += left * right; } cout << res << endl; } */