結果

問題 No.2422 regisys?
ユーザー mkawa2mkawa2
提出日時 2023-08-12 15:03:41
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 7,233 bytes
コンパイル時間 383 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 671,392 KB
最終ジャッジ日時 2024-11-19 23:09:08
合計ジャッジ時間 88,065 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 69 ms
74,752 KB
testcase_01 WA -
testcase_02 AC 75 ms
77,440 KB
testcase_03 WA -
testcase_04 AC 83 ms
77,184 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 80 ms
348,288 KB
testcase_10 AC 74 ms
76,032 KB
testcase_11 WA -
testcase_12 AC 69 ms
74,496 KB
testcase_13 AC 104 ms
343,668 KB
testcase_14 AC 75 ms
75,776 KB
testcase_15 AC 100 ms
342,672 KB
testcase_16 AC 78 ms
77,312 KB
testcase_17 AC 73 ms
417,428 KB
testcase_18 AC 75 ms
76,928 KB
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 78 ms
78,464 KB
testcase_23 WA -
testcase_24 AC 92 ms
83,584 KB
testcase_25 AC 96 ms
417,516 KB
testcase_26 AC 68 ms
74,752 KB
testcase_27 AC 82 ms
510,392 KB
testcase_28 AC 83 ms
79,104 KB
testcase_29 AC 80 ms
480,552 KB
testcase_30 AC 79 ms
77,952 KB
testcase_31 MLE -
testcase_32 TLE -
testcase_33 MLE -
testcase_34 TLE -
testcase_35 MLE -
testcase_36 TLE -
testcase_37 TLE -
testcase_38 TLE -
testcase_39 MLE -
testcase_40 AC 1,235 ms
177,120 KB
testcase_41 TLE -
testcase_42 TLE -
testcase_43 TLE -
testcase_44 TLE -
testcase_45 TLE -
testcase_46 TLE -
testcase_47 TLE -
testcase_48 TLE -
testcase_49 TLE -
testcase_50 TLE -
testcase_51 TLE -
testcase_52 AC 1,483 ms
227,860 KB
testcase_53 TLE -
testcase_54 TLE -
testcase_55 TLE -
testcase_56 TLE -
testcase_57 TLE -
testcase_58 TLE -
testcase_59 TLE -
testcase_60 TLE -
testcase_61 AC 69 ms
396,092 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# sys.setrecursionlimit(200005)
# sys.set_int_max_str_digits(1000005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()

# dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = -1-(-1 << 63)
# md = 10**9+7
md = 998244353

from typing import NamedTuple, Optional, List, cast

class MFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int

    class _Edge:
        def __init__(self, dst: int, cap: int) -> None:
            self.dst = dst
            self.cap = cap
            self.rev: Optional[MFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n+2
        self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n+2)]
        self._edges: List[MFGraph._Edge] = []
        self._lower_sum = 0

    def add_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, 0)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    # cap's range [l,r]
    def add_edge_lr(self, src: int, dst: int, l: int, r: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= l <= r
        if r-l: self.add_edge(src, dst, r-l)
        self.add_edge(src, self._n-1, l)
        self.add_edge(self._n-2, dst, l)
        self._lower_sum += l

    def add_undir_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, cap)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MFGraph._Edge, e.rev)
        return MFGraph.Edge(
            re.dst,
            e.dst,
            e.cap+re.cap,
            re.cap
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
        assert 0 <= i < len(self._edges)
        assert 0 <= new_flow <= new_cap
        e = self._edges[i]
        e.cap = new_cap-new_flow
        assert e.rev is not None
        e.rev.cap = new_flow

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        current_edge = [0]*self._n
        level = [0]*self._n

        def fill(arr: List[int], value: int) -> None:
            for i in range(len(arr)):
                arr[i] = value

        def bfs() -> bool:
            fill(level, self._n)
            queue = []
            q_front = 0
            queue.append(s)
            level[s] = 0
            while q_front < len(queue):
                v = queue[q_front]
                q_front += 1
                next_level = level[v]+1
                for e in self._g[v]:
                    if e.cap == 0 or level[e.dst] <= next_level:
                        continue
                    level[e.dst] = next_level
                    if e.dst == t:
                        return True
                    queue.append(e.dst)
            return False

        def dfs(lim: int) -> int:
            stack = []
            edge_stack: List[MFGraph._Edge] = []
            stack.append(t)
            while stack:
                v = stack[-1]
                if v == s:
                    flow = min(lim, min(e.cap for e in edge_stack))
                    for e in edge_stack:
                        e.cap -= flow
                        assert e.rev is not None
                        e.rev.cap += flow
                    return flow
                next_level = level[v]-1
                while current_edge[v] < len(self._g[v]):
                    e = self._g[v][current_edge[v]]
                    re = cast(MFGraph._Edge, e.rev)
                    if level[e.dst] != next_level or re.cap == 0:
                        current_edge[v] += 1
                        continue
                    stack.append(e.dst)
                    edge_stack.append(re)
                    break
                else:
                    stack.pop()
                    if edge_stack:
                        edge_stack.pop()
                    level[v] = self._n
            return 0

        flow = 0
        while flow < flow_limit:
            if not bfs():
                break
            fill(current_edge, 0)
            while flow < flow_limit:
                f = dfs(flow_limit-flow)
                flow += f
                if f == 0:
                    break
        return flow

    def flow_lr(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit:
            flow_limit -= self._lower_sum
            if flow_limit < 0: return -1
        f = self.flow(self._n-2, self._n-1)*2
        f += self.flow(self._n-2, t)
        f += self.flow(s, self._n-1)
        if f < self._lower_sum*2: return -1
        f = self.flow(s, t, flow_limit)
        return f+self._lower_sum

    def min_cut(self, s: int) -> List[bool]:
        visited = [False]*self._n
        stack = [s]
        visited[s] = True
        while stack:
            v = stack.pop()
            for e in self._g[v]:
                if e.cap > 0 and not visited[e.dst]:
                    visited[e.dst] = True
                    stack.append(e.dst)
        return visited

from bisect import bisect

n,m=LI()
aa=LI()
bb=LI()
au=sorted((a,u) for u,a in enumerate(aa))
bu=sorted((a,u) for u,a in enumerate(bb))
tc=LLI(m)

mf=MFGraph(n*3+m+2)
s=n*3+m
t=s+1

for u,(t,c) in enumerate(tc,3*n):
    if t:
        i=bisect(bu,(c,inf))
        if i:
            v=bu[i-1][1]+2*n
            mf.add_edge(u,v,inf)
    else:
        i=bisect(au,(c,inf))
        if i:
            v=au[i-1][1]+n
            mf.add_edge(u,v,inf)
    mf.add_edge(s,u,1)

for u in range(n):
    mf.add_edge(u+n,u,inf)
    mf.add_edge(u+2*n,u,inf)
    mf.add_edge(u,t,1)

for i in range(n-1):
    u=au[i][1]+n
    v=au[i+1][1]+n
    mf.add_edge(v,u,inf)
    u=bu[i][1]+2*n
    v=bu[i+1][1]+2*n
    mf.add_edge(v,u,inf)

print(n-mf.flow(s,t))
0