結果
| 問題 |
No.2421 entersys?
|
| コンテスト | |
| ユーザー |
prd_xxx
|
| 提出日時 | 2023-08-12 15:14:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,151 bytes |
| コンパイル時間 | 374 ms |
| コンパイル使用メモリ | 82,400 KB |
| 実行使用メモリ | 216,584 KB |
| 最終ジャッジ日時 | 2024-11-20 00:38:19 |
| 合計ジャッジ時間 | 23,419 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 25 WA * 3 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a: Optional[List[T]] = None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
self.size = len(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int]:
"Find the bucket and position which x should be inserted. self must not be empty."
for a in self.a:
if x <= a[-1]: break
return (a, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def _pop(self, a: List[T], i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: self._build()
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return self._pop(a, i)
else:
for a in self.a:
if i < len(a): return self._pop(a, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class BinaryIndexedTree:
def __init__(self,size):
self.N = size
self.bit = [0]*(size+1)
def add(self,x,w):
x += 1
while x <= self.N:
self.bit[x] += w
x += (x & -x)
def _sum(self,x): # [0,x)
ret = 0
while x > 0:
ret += self.bit[x]
x -= (x & -x)
return ret
def sum(self,l,r): # [l,r)
return self._sum(r) - self._sum(l)
def lower_bound(self,w):
if w <= 0: return 0
x,k = 0,1
while k*2 <= self.N:
k *= 2
while k > 0:
if x+k <= self.N and self.bit[x+k] < w:
w -= self.bit[x+k]
x += k
k //= 2
return x
def __str__(self): # for debug
arr = [self.sum(i,i+1) for i in range(self.N)]
return str(arr)
import sys
input = sys.stdin.readline
N = int(input())
XLR = [input().split() for i in range(N)]
Q = int(input())
qs = [input().split() for i in range(Q)]
names = set()
times = set()
for x,l,r in XLR:
l,r = int(l),int(r)
names.add(x)
times.add(l)
times.add(r)
for _t,*q in qs:
if _t=='1':
x,t = q
t = int(t)
names.add(x)
times.add(t)
elif _t=='2':
t, = q
t = int(t)
times.add(t)
else:
x,l,r = q
l,r = int(l),int(r)
names.add(x)
times.add(l)
times.add(r)
s_names = sorted(names)
s_times = sorted(times)
d_names = {a:i for i,a in enumerate(s_names)}
d_times = {a:i for i,a in enumerate(s_times)}
M = len(s_names)
T = len(s_times)
st = [SortedSet() for _ in range(M)]
bit = BinaryIndexedTree(T+1)
for x,l,r in XLR:
xi = d_names[x]
li = d_times[int(l)]
ri = d_times[int(r)]
st[xi].add(li)
st[xi].add(ri)
bit.add(li, 1)
bit.add(ri+1, -1)
for _t,*q in qs:
if _t=='1':
x,t = q
t = int(t)
xi = d_names[x]
ti = d_times[t]
print('Yes' if st[xi].index_right(ti)%2 else 'No')
elif _t=='2':
t, = q
t = int(t)
ti = d_times[t]
print(bit._sum(ti+1))
else:
x,l,r = q
l,r = int(l),int(r)
xi = d_names[x]
li = d_times[int(l)]
ri = d_times[int(r)]
st[xi].add(li)
st[xi].add(ri)
bit.add(li, 1)
bit.add(ri+1, -1)
prd_xxx