結果

問題 No.2421 entersys?
ユーザー nikoro256nikoro256
提出日時 2023-08-12 15:14:42
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,484 ms / 3,000 ms
コード長 8,115 bytes
コンパイル時間 384 ms
コンパイル使用メモリ 82,352 KB
実行使用メモリ 233,132 KB
最終ジャッジ日時 2024-11-20 00:53:50
合計ジャッジ時間 38,660 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 66 ms
68,480 KB
testcase_01 AC 112 ms
78,992 KB
testcase_02 AC 162 ms
79,608 KB
testcase_03 AC 81 ms
74,004 KB
testcase_04 AC 116 ms
78,336 KB
testcase_05 AC 141 ms
79,568 KB
testcase_06 AC 146 ms
79,696 KB
testcase_07 AC 163 ms
79,916 KB
testcase_08 AC 152 ms
79,616 KB
testcase_09 AC 184 ms
79,616 KB
testcase_10 AC 143 ms
79,852 KB
testcase_11 AC 2,094 ms
204,728 KB
testcase_12 AC 2,088 ms
205,260 KB
testcase_13 AC 2,064 ms
199,820 KB
testcase_14 AC 2,075 ms
203,144 KB
testcase_15 AC 2,116 ms
200,252 KB
testcase_16 AC 2,063 ms
212,328 KB
testcase_17 AC 2,251 ms
215,388 KB
testcase_18 AC 2,145 ms
217,696 KB
testcase_19 AC 2,103 ms
215,860 KB
testcase_20 AC 2,115 ms
212,880 KB
testcase_21 AC 1,480 ms
175,352 KB
testcase_22 AC 1,601 ms
203,100 KB
testcase_23 AC 2,406 ms
232,260 KB
testcase_24 AC 2,354 ms
232,440 KB
testcase_25 AC 2,484 ms
233,132 KB
testcase_26 AC 1,056 ms
158,288 KB
testcase_27 AC 1,043 ms
157,652 KB
testcase_28 AC 1,091 ms
159,208 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#遅延セグメント木https://qiita.com/ether2420/items/7b67b2b35ad5f441d686def 
def segfunc(x,y):
    return x+y
class LazySegTree_RAQ:
    def __init__(self,init_val,segfunc,ide_ele):
        n = len(init_val)
        self.segfunc = segfunc
        self.ide_ele = ide_ele
        self.num = 1<<(n-1).bit_length()
        self.tree = [ide_ele]*2*self.num
        self.lazy = [0]*2*self.num
        for i in range(n):
            self.tree[self.num+i] = init_val[i]
        for i in range(self.num-1,0,-1):
            self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1])
    def gindex(self,l,r):
        l += self.num
        r += self.num
        lm = l>>(l&-l).bit_length()
        rm = r>>(r&-r).bit_length()
        while r>l:
            if l<=lm:
                yield l
            if r<=rm:
                yield r
            r >>= 1
            l >>= 1
        while l:
            yield l
            l >>= 1
    def propagates(self,*ids):
        for i in reversed(ids):
            v = self.lazy[i]
            if v==0:
                continue
            self.lazy[i] = 0
            self.lazy[2*i] += v
            self.lazy[2*i+1] += v
            self.tree[2*i] += v
            self.tree[2*i+1] += v
    def add(self,l,r,x):
        ids = self.gindex(l,r)
        l += self.num
        r += self.num
        while l<r:
            if l&1:
                self.lazy[l] += x
                self.tree[l] += x
                l += 1
            if r&1:
                self.lazy[r-1] += x
                self.tree[r-1] += x
            r >>= 1
            l >>= 1
        for i in ids:
            self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) + self.lazy[i]
    def query(self,l,r):
        self.propagates(*self.gindex(l,r))
        res = self.ide_ele
        l += self.num
        r += self.num
        while l<r:
            if l&1:
                res = self.segfunc(res,self.tree[l])
                l += 1
            if r&1:
                res = self.segfunc(res,self.tree[r-1])
            l >>= 1
            r >>= 1
        return res

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')

class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a: Optional[List[T]] = None) -> None:
        if a is None: a = list(self)
        size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        #Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)
        a = list(a)
        self.size = len(a)
        if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
            a = sorted(a)
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return s

    def _position(self, x: T) -> Tuple[List[T], int]:
        #Find the bucket and position which x should be inserted. self must not be empty.
        for a in self.a:
            if x <= a[-1]: break
        return (a, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, i = self._position(x)
        return i != len(a) and a[i] == x

    def count(self, x: T) -> int:
        #Count the number of x.
        return self.index_right(x) - self.index(x)

    def add(self, x: T) -> None:
        #Add an element. / O(√N)
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a, i = self._position(x)
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
    
    def _pop(self, a: List[T], i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: self._build()
        return ans

    def discard(self, x: T) -> bool:
        #Remove an element and return True if removed. / O(√N)
        if self.size == 0: return False
        a, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, i)
        return True

    def lt(self, x: T) -> Optional[T]:
        #Find the largest element < x, or None if it doesn't exist.
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Optional[T]:
        #Find the largest element <= x, or None if it doesn't exist.
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Optional[T]:
        #Find the smallest element > x, or None if it doesn't exist.
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Optional[T]:
        #Find the smallest element >= x, or None if it doesn't exist.
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int) -> T:
        #Return the i-th element.
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1) -> T:
        #Pop and return the i-th element.
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return self._pop(a, i)
        else:
            for a in self.a:
                if i < len(a): return self._pop(a, i)
                i -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        #Count the number of elements < x.
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        #Count the number of elements <= x.
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

import sys
from collections import defaultdict
import bisect
input=sys.stdin.readline
dat1=[]
N=int(input())
zaatu=set()
for i in range(N):
    X,L,R=map(str,input().split())
    L=int(L)
    R=int(R)
    zaatu.add(L)
    zaatu.add(R)
    dat1.append([X,L,R])
Q=int(input())
q=[]
for _ in range(Q):
    qi=list(map(str,input().split()))
    q.append(qi)
    if qi[0]=='3':
        zaatu.add(int(qi[2]))
        zaatu.add(int(qi[3]))
    elif qi[0]=='2':
        zaatu.add(int(qi[1]))
zaatu=sorted(list(zaatu))
dic=defaultdict(SortedMultiset)
st=LazySegTree_RAQ([0 for i in range(len(zaatu))],max,0)
for i in range(N):
    X,L,R=dat1[i]
    dic[X].add(L)
    dic[X].add(R+1)
    left=bisect.bisect_left(zaatu,L)
    right=bisect.bisect_left(zaatu,R)
    st.add(left,right+1,1)
for qi in q:
    if qi[0]=='1':
        d,x,t=qi
        t=int(t)
        l=dic[x].index_right(t)
        if l%2==1:
            print('Yes')
        else:
            print('No')
    elif qi[0]=='2':
        qi[1]=int(qi[1])
        bi=bisect.bisect_left(zaatu,qi[1])
        print(st.query(bi,bi+1))
    elif qi[0]=='3':
        d,X,L,R=qi
        L=int(L)
        R=int(R)
        dic[X].add(L)
        dic[X].add(R+1)
        left=bisect.bisect_left(zaatu,L)
        right=bisect.bisect_left(zaatu,R)
        st.add(left,right+1,1)
0