結果

問題 No.2421 entersys?
ユーザー prd_xxxprd_xxx
提出日時 2023-08-12 15:16:10
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 7,145 bytes
コンパイル時間 456 ms
コンパイル使用メモリ 82,516 KB
実行使用メモリ 215,608 KB
最終ジャッジ日時 2024-04-30 08:43:20
合計ジャッジ時間 20,659 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 61 ms
68,976 KB
testcase_01 AC 66 ms
73,532 KB
testcase_02 AC 93 ms
79,340 KB
testcase_03 AC 60 ms
70,704 KB
testcase_04 AC 65 ms
74,900 KB
testcase_05 AC 84 ms
78,376 KB
testcase_06 AC 80 ms
78,016 KB
testcase_07 AC 91 ms
78,236 KB
testcase_08 AC 85 ms
78,496 KB
testcase_09 AC 106 ms
79,368 KB
testcase_10 AC 86 ms
78,332 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 905 ms
190,904 KB
testcase_22 WA -
testcase_23 AC 1,142 ms
215,608 KB
testcase_24 AC 1,154 ms
215,304 KB
testcase_25 AC 1,165 ms
215,340 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')

class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a: Optional[List[T]] = None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        self.size = len(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x: T) -> Tuple[List[T], int]:
        "Find the bucket and position which x should be inserted. self must not be empty."
        for a in self.a:
            if x <= a[-1]: break
        return (a, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, i = self._position(x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a, i = self._position(x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True
    
    def _pop(self, a: List[T], i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: self._build()
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, i)
        return True
    
    def lt(self, x: T) -> Optional[T]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Optional[T]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Optional[T]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Optional[T]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return self._pop(a, i)
        else:
            for a in self.a:
                if i < len(a): return self._pop(a, i)
                i -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

class BinaryIndexedTree:
    def __init__(self,size):
        self.N = size
        self.bit = [0]*(size+1)
    def add(self,x,w):
        x += 1
        while x <= self.N:
            self.bit[x] += w
            x += (x & -x)
    def _sum(self,x): # [0,x)
        ret = 0
        while x > 0:
            ret += self.bit[x]
            x -= (x & -x)
        return ret
    def sum(self,l,r): # [l,r)
        return self._sum(r) - self._sum(l)
    def lower_bound(self,w):
        if w <= 0: return 0
        x,k = 0,1
        while k*2 <= self.N:
            k *= 2
        while k > 0:
            if x+k <= self.N and self.bit[x+k] < w:
                w -= self.bit[x+k]
                x += k
            k //= 2
        return x
    def __str__(self): # for debug
        arr = [self.sum(i,i+1) for i in range(self.N)]
        return str(arr)

import sys
input = sys.stdin.readline
N = int(input())
XLR = [input().split() for i in range(N)]
Q = int(input())
qs = [input().split() for i in range(Q)]

names = set()
times = set()
for x,l,r in XLR:
    l,r = int(l),int(r)
    names.add(x)
    times.add(l)
    times.add(r)
for _t,*q in qs:
    if _t=='1':
        x,t = q
        t = int(t)
        names.add(x)
        times.add(t)
    elif _t=='2':
        t, = q
        t = int(t)
        times.add(t)
    else:
        x,l,r = q
        l,r = int(l),int(r)
        names.add(x)
        times.add(l)
        times.add(r)

s_names = sorted(names)
s_times = sorted(times)
d_names = {a:i for i,a in enumerate(s_names)}
d_times = {a:i for i,a in enumerate(s_times)}
M = len(s_names)
T = len(s_times)

st = [SortedSet() for _ in range(M)]
bit = BinaryIndexedTree(T+1)
for x,l,r in XLR:
    xi = d_names[x]
    li = d_times[int(l)]
    ri = d_times[int(r)]
    st[xi].add(li)
    st[xi].add(ri)
    bit.add(li, 1)
    bit.add(ri, -1)

for _t,*q in qs:
    if _t=='1':
        x,t = q
        t = int(t)
        xi = d_names[x]
        ti = d_times[t]
        print('Yes' if st[xi].index_right(ti)%2 else 'No')
    elif _t=='2':
        t, = q
        t = int(t)
        ti = d_times[t]
        print(bit._sum(ti))
    else:
        x,l,r = q
        l,r = int(l),int(r)
        xi = d_names[x]
        li = d_times[int(l)]
        ri = d_times[int(r)]
        st[xi].add(li)
        st[xi].add(ri)
        bit.add(li, 1)
        bit.add(ri, -1)

0