結果

問題 No.2423 Merge Stones
ユーザー ecottea
提出日時 2023-08-12 17:33:01
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 502 ms / 4,000 ms
コード長 8,797 bytes
コンパイル時間 4,538 ms
コンパイル使用メモリ 267,660 KB
最終ジャッジ日時 2025-02-16 07:22:57
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 72
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
// DP
void TLE() {
int n, k;
cin >> n >> k;
vl a(n); vi c(n);
cin >> a >> c;
--c;
int C = 50; dump(C = 6); dump(INFL = 99);
vvvl dp(n, vvl(n, vl(C, -INFL)));
rep(i, n) dp[i][(i + 1) % n][c[i]] = a[i];
// O(n n n C K)
repi(w, 2, n) rep(l, n) {
int r = l + w - 1; // ??
repi(m, l + 1, r - 1) {
rep(jL, C) {
if (dp[l][m % n][jL] < 0) continue;
repi(jR, max(jL - k, 0), min(jL + k, C - 1)) {
ll val = dp[l][m % n][jL] + dp[m % n][r % n][jR];
chmax(dp[l][r % n][jL], val);
chmax(dp[l][r % n][jR], val);
}
}
}
}
dumpel(dp);
ll res = 0;
rep(l, n) rep(r, n) rep(j, C) chmax(res, dp[l][r][j]);
cout << res << endl;
}
// O(n^3) → O(n^2) Monge TLE
void WA() {
int n, k;
cin >> n >> k;
vl a(n); vi c(n);
cin >> a >> c;
--c;
int C = 50; dump(C = 6); dump(INFL = 99);
vvvl dp(n, vvl(n, vl(C, -INFL)));
rep(i, n) dp[i][(i + 1) % n][c[i]] = a[i];
vvvi spl(n, vvi(n, vi(C, -1)));
rep(i, n) spl[i][(i + 1) % n][c[i]] = i + 1;
vvvi spr(n, vvi(n, vi(C, -1)));
rep(i, n) spr[i][(i + 1) % n][c[i]] = i;
repi(w, 2, n) rep(l, n) {
int r = l + w - 1; // ??
{
int m = l + 1;
int jL = c[l];
repi(jR, max(jL - k, 0), min(jL + k, C - 1)) {
ll val = dp[l][m % n][jL] + dp[m % n][r % n][jR];
if (chmax(dp[l][r % n][jL], val)) spl[l][r % n][jL] = m;
if (chmax(dp[l][r % n][jR], val)) spr[l][r % n][jR] = m;
}
}
{
int m = r - 1;
int jR = c[(r - 1) % n];
repi(jL, max(jR - k, 0), min(jR + k, C - 1)) {
ll val = dp[l][m % n][jL] + dp[m % n][r % n][jR];
if (chmax(dp[l][r % n][jL], val)) spl[l][r % n][jL] = m;
if (chmax(dp[l][r % n][jR], val)) spr[l][r % n][jR] = m;
}
}
rep(jL, C) {
if (spl[l][(r - 1) % n][jL] == -1) continue;
if (spl[(l + 1) % n][r % n][jL] == -1) continue;
repi(m, spl[l][(r - 1) % n][jL], spl[(l + 1) % n][r % n][jL]) {
repi(jR, max(jL - k, 0), min(jL + k, C - 1)) {
ll val = dp[l][m % n][jL] + dp[m % n][r % n][jR];
if (chmax(dp[l][r % n][jL], val)) spl[l][r % n][jL] = m;
if (chmax(dp[l][r % n][jR], val)) spr[l][r % n][jR] = m;
}
}
}
rep(jR, C) {
if (spr[l][(r - 1) % n][jR] == -1) continue;
if (spr[(l + 1) % n][r % n][jR] == -1) continue;
repi(m, spr[l][(r - 1) % n][jR], spr[(l + 1) % n][r % n][jR]) {
repi(jL, max(jR - k, 0), min(jR + k, C - 1)) {
ll val = dp[l][m % n][jL] + dp[m % n][r % n][jR];
if (chmax(dp[l][r % n][jL], val)) spl[l][r % n][jL] = m;
if (chmax(dp[l][r % n][jR], val)) spr[l][r % n][jR] = m;
}
}
}
}
dumpel(dp);
ll res = 0;
rep(l, n) rep(r, n) rep(j, C) chmax(res, dp[l][r][j]);
cout << res << endl;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
// AC
//
// bool
// bool DP bitset
int n, k;
cin >> n >> k;
vl a(n); vi c(n);
cin >> a >> c;
--c;
vvl dp(n, vl(n));
rep(i, n) dp[i][(i + 1) % n] = 1LL << c[i];
repi(w, 2, n) rep(l, n) {
int r = l + w;
repi(m, l + 1, r - 1) {
repi(j, 0, k) {
dp[l][r % n] |= dp[l][m % n] & (dp[m % n][r % n] >> j);
dp[l][r % n] |= dp[l][m % n] & (dp[m % n][r % n] << j);
dp[l][r % n] |= (dp[l][m % n] >> j) & dp[m % n][r % n];
dp[l][r % n] |= (dp[l][m % n] << j) & dp[m % n][r % n];
}
}
}
dumpel(dp);
ll res = 0;
rep(l, n) rep(r, n) {
if (dp[l][r] == 0) continue;
ll sc = 0;
int L = l, R = r - 1;
if (L > R) R += n;
repi(i, L, R) sc += a[i % n];
chmax(res, sc);
}
cout << res << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0