結果
| 問題 |
No.2438 Double Least Square
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-08-13 02:49:57 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 6,491 bytes |
| コンパイル時間 | 10,282 ms |
| コンパイル使用メモリ | 434,032 KB |
| 最終ジャッジ日時 | 2025-02-16 07:39:44 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 10 TLE * 1 -- * 19 |
ソースコード
#include <bits/stdc++.h>
#include <boost/multiprecision/cpp_int.hpp>
#define rep(i, s, n) for (int i = int(s); i < int(n); i++)
#define all(v) (v).begin(), (v).end()
using boost::multiprecision::cpp_int;
using bigint = cpp_int;
template <class T> void arg_sort_ll(std::vector<std::pair<T, T>>& a) {
using Point = std::pair<T, T>;
int n = (int)a.size();
std::vector ps(4, std::vector<Point>());
auto idx = [](Point v) -> int {
if (v.second >= 0)
return (v.first >= 0) ? 0 : 1;
else
return (v.first >= 0) ? 3 : 2;
};
for (auto p : a) {
assert(!(p.first == 0 && p.second == 0));
ps[idx(p)].emplace_back(p);
}
a.clear();
a.reserve(n);
for (int j = 0; j < 4; j++) {
int i = (3 + j) % 4;
std::sort(ps[i].begin(), ps[i].end(), [](Point& p1, Point& p2) -> bool {
T flag = p1.first * p2.second - p2.first * p1.second;
return flag == 0 ? (p1.first * p1.first + p1.second * p1.second <
p2.first * p2.first + p2.second * p2.second)
: flag > 0;
});
for (auto& p : ps[i]) a.emplace_back(p);
}
return;
}
using ld = long double;
bigint GCD(bigint a, bigint b) {
if (b == 0)
return a;
else
return GCD(b, a % b);
}
struct rational {
rational() : p(0), q(1) {}
rational(bigint n) : p(n), q(1) {}
rational(bigint n, bigint m) {
assert(m != 0);
if (m < 0) n = -n, m = -m;
bigint g = GCD(n, m);
p = n / g;
q = m / g;
}
explicit operator const ld() const {
return ld(p) / ld(q);
}
rational& operator+=(const rational& rhs) {
bigint g = GCD(q, rhs.q);
bigint np = rhs.q / g * p + q / g * rhs.p;
bigint nq = q / g * rhs.q;
bigint ng = GCD(np, nq);
p = np / ng, q = nq / ng;
return *this;
}
rational& operator-=(const rational& rhs) {
(*this) += rational(-rhs.p, rhs.q);
return *this;
}
rational& operator*=(const rational& rhs) {
bigint g1 = GCD(q, rhs.p), g2 = GCD(p, rhs.q);
bigint np = p / g2 * rhs.p / g1;
bigint nq = q / g1 * rhs.q / g2;
p = np, q = nq;
return *this;
}
rational& operator/=(const rational& rhs) {
(*this) *= rational(rhs.q, rhs.p);
return *this;
}
rational operator+() const {
return *this;
}
rational operator-() const {
return rational() - *this;
}
friend rational operator+(const rational& lhs, const rational& rhs) {
return rational(lhs) += rhs;
}
friend rational operator-(const rational& lhs, const rational& rhs) {
return rational(lhs) -= rhs;
}
friend rational operator*(const rational& lhs, const rational& rhs) {
return rational(lhs) *= rhs;
}
friend rational operator/(const rational& lhs, const rational& rhs) {
return rational(lhs) /= rhs;
}
friend bool operator==(const rational& lhs, const rational& rhs) {
return lhs.p == rhs.p && lhs.q == rhs.q;
}
friend bool operator!=(const rational& lhs, const rational& rhs) {
return lhs.p != rhs.p || lhs.q != rhs.q;
}
friend bool operator<(const rational lhs, const rational rhs) {
return less_than(lhs, rhs);
}
friend bool operator>(const rational lhs, const rational rhs) {
return less_than(rhs, lhs);
}
friend bool operator<=(const rational lhs, const rational rhs) {
return lhs == rhs || lhs < rhs;
}
friend bool operator>=(const rational lhs, const rational rhs) {
return lhs == rhs || lhs > rhs;
}
friend std::ostream& operator<<(std::ostream& os, const rational& r) {
return os << r.p << " / " << r.q;
}
std::pair<bigint, bigint> val() const {
return {p, q};
}
private:
bigint p, q;
static bool less_than(rational lhs, rational rhs) {
__int128_t lv = __int128_t(lhs.p) * __int128_t(rhs.q);
__int128_t rv = __int128_t(lhs.q) * __int128_t(rhs.p);
return lv < rv;
}
};
template <class T> bool chmin(T& a, T b) {
if (a < b) return false;
a = b;
return true;
}
int main() {
std::cout << std::fixed << std::setprecision(15);
int n;
bigint h;
std::cin >> n >> h;
std::vector<std::pair<bigint, bigint>> ps(n);
std::vector<bigint> xs;
for (auto& [x, y] : ps) {
std::cin >> x >> y;
xs.emplace_back(x);
}
std::sort(all(xs));
xs.erase(std::unique(all(xs)), xs.end());
std::vector<int> arg_ord;
{
std::vector<std::pair<bigint, bigint>> ret;
std::map<std::pair<bigint, bigint>, int> map;
rep(i, 0, n) {
auto [x, y] = ps[i];
ret.emplace_back(2 * x, 2 * y - h);
map[{2 * x, 2 * y - h}] = i;
}
arg_sort_ll(ret);
for (auto [x, y] : ret) {
arg_ord.emplace_back(map[{x, y}]);
}
}
rational ans = rational(100000000000);
auto calc_score = [](const std::vector<bigint>& a) -> rational {
if (a[2] == 0) {
assert(a[1] == 0 && a[2] == 0);
return bigint(0);
}
return rational(a[0]) - rational(a[1] * a[1]) / rational(4 * a[2]);
};
for (auto tx : xs) {
std::vector<bigint> u(3, 0), d(3, 0);
for (auto [x, y] : ps) {
if (x <= tx) {
u[0] += (y - h) * (y - h);
u[1] += -2 * x * (y - h);
u[2] += x * x;
} else {
d[0] += y * y;
d[1] += -2 * x * y;
d[2] += x * x;
}
}
chmin(ans, calc_score(u) + calc_score(d));
for (auto i : arg_ord) {
auto [x, y] = ps[i];
if (x <= tx) {
u[0] -= (y - h) * (y - h);
u[1] -= -2 * x * (y - h);
u[2] -= x * x;
d[0] += y * y;
d[1] += -2 * x * y;
d[2] += x * x;
} else {
d[0] -= y * y;
d[1] -= -2 * x * y;
d[2] -= x * x;
u[0] += (y - h) * (y - h);
u[1] += -2 * x * (y - h);
u[2] += x * x;
}
chmin(ans, calc_score(u) + calc_score(d));
}
}
auto [p, q] = ans.val();
std::cout << ld(p) / ld(q) << '\n';
}