結果
問題 | No.2379 Burnside's Theorem |
ユーザー | McGregorsh |
提出日時 | 2023-08-13 12:18:12 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,096 bytes |
コンパイル時間 | 159 ms |
コンパイル使用メモリ | 82,508 KB |
実行使用メモリ | 91,872 KB |
最終ジャッジ日時 | 2024-11-21 07:00:12 |
合計ジャッジ時間 | 4,966 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 159 ms
91,064 KB |
testcase_01 | AC | 159 ms
91,256 KB |
testcase_02 | AC | 163 ms
91,264 KB |
testcase_03 | AC | 157 ms
91,392 KB |
testcase_04 | AC | 158 ms
91,136 KB |
testcase_05 | AC | 158 ms
91,136 KB |
testcase_06 | AC | 157 ms
91,136 KB |
testcase_07 | AC | 159 ms
91,008 KB |
testcase_08 | AC | 158 ms
91,648 KB |
testcase_09 | AC | 160 ms
91,484 KB |
testcase_10 | AC | 159 ms
91,392 KB |
testcase_11 | AC | 160 ms
91,076 KB |
testcase_12 | AC | 157 ms
91,136 KB |
testcase_13 | AC | 168 ms
91,472 KB |
testcase_14 | AC | 165 ms
91,392 KB |
testcase_15 | AC | 167 ms
91,872 KB |
testcase_16 | AC | 161 ms
91,264 KB |
testcase_17 | AC | 161 ms
91,264 KB |
testcase_18 | AC | 158 ms
91,264 KB |
testcase_19 | AC | 158 ms
91,136 KB |
testcase_20 | AC | 159 ms
91,364 KB |
testcase_21 | AC | 159 ms
91,068 KB |
testcase_22 | WA | - |
testcase_23 | AC | 155 ms
91,168 KB |
ソースコード
import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ###セグメントツリー### #####segfunc##### def segfunc(x, y): return x + y # 最小値 min(x, y) # 最大値 max(x, y) # 区間和 x + y # 区間積 x * y # 最大公約数 math.gcd(x, y) # 排他的論理和 x ^ y ################# #####ide_ele##### ide_ele = 0 # 最小値 float('inf') # 最大値 -float('inf') # 区間和 0 # 区間積 1 # 最大公約数 0 # 排他的論理和 0 ################# class SegTree: """ init(init_val, ide_ele): 配列init_valで初期化 O(N) update(k, x): k番目の値をxに更新 O(logN) query(l, r): 区間[l, r)をsegfuncしたものを返す O(logN) """ def __init__(self, init_val, segfunc, ide_ele): """ init_val: 配列の初期値 segfunc: 区間にしたい操作 ide_ele: 単位元 n: 要素数 num: n以上の最小の2のべき乗 tree: セグメント木(1-index) """ n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num # 配列の値を葉にセット for i in range(n): self.tree[self.num + i] = init_val[i] # 構築していく for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): """ k番目の値をxに更新 k: index(0-index) x: update value """ k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): """ [l, r)のsegfuncしたものを得る l: index(0-index) r: index(0-index) """ res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r - 1]) l >>= 1 r >>= 1 return res ###UnionFind### class UnionFind: """0-indexed""" def __init__(self, n): self.n = n self.parent = [-1] * n self.__group_count = n # 辺がないとき、連結成分はn個あります def unite(self, x, y): """xとyをマージ""" x = self.root(x) y = self.root(y) if x == y: return 0 self.__group_count -= 1 # 木と木が合体するので、連結成分数が1減ります if self.parent[x] > self.parent[y]: x, y = y, x self.parent[x] += self.parent[y] self.parent[y] = x return self.parent[x] def is_same(self, x, y): """xとyが同じ連結成分か判定""" return self.root(x) == self.root(y) def root(self, x): """xの根を取得""" if self.parent[x] < 0: return x else: self.parent[x] = self.root(self.parent[x]) return self.parent[x] def size(self, x): """xが属する連結成分のサイズを取得""" return -self.parent[self.root(x)] def all_sizes(self) -> List[int]: """全連結成分のサイズのリストを取得 O(N) """ sizes = [] for i in range(self.n): size = self.parent[i] if size < 0: sizes.append(-size) return sizes def groups(self) -> List[List[int]]: """全連結成分の内容のリストを取得 O(N・α(N))""" groups = dict() for i in range(self.n): p = self.root(i) if not groups.get(p): groups[p] = [] groups[p].append(i) return list(groups.values()) def group_count(self) -> int: """連結成分の数を取得 O(1)""" return self.__group_count # 変数を返すだけなので、O(1)です ###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)//factr ###組合せMOD### def comb(n,k): nCk = 1 MOD = 99824353 for i in range(n-k+1, n+1): nCk *= i nCk %= MOD for i in range(1,k+1): nCk *= pow(i,MOD-2,MOD) nCk %= MOD return nCk ###回転行列### def RotationMatrix(before_x, before_y, d): d = math.radians(d) new_x = before_x * math.cos(d) - before_y * math.sin(d) new_y = before_x * math.sin(d) + before_y * math.cos(d) return new_x, new_y ###ダイクストラ### def daikusutora(N, G, s): dist = [INF] * N que = [(0, s)] dist[s] = 0 while que: c, v = heappop(que) if dist[v] < c: continue for t, cost in G[v]: if dist[v] + cost < dist[t]: dist[t] = dist[v] + cost heappush(que, (dist[t], t)) return dist import sys from sys import stdin from fractions import Fraction import math from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce, lru_cache from decimal import Decimal, getcontext, ROUND_HALF_UP def i_input(): return int(stdin.readline()) def i_map(): return map(int, stdin.readline().split()) def i_list(): return list(i_map()) def s_input(): return stdin.readline()[:-1] def s_map(): return s_input().split() def s_list(): return list(s_map()) def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 alpa = 'abcdefghijklmnopqrstuvwxyz' ALPA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def main(): N = int(input()) nums = prime_factorize(N) if N == 1: print('No') exit() ret = set() for i in nums: ret.add(i) if len(ret) == 2 or len(ret) == 1: print('Yes') else: print('No') if __name__ == '__main__': main()