結果

問題 No.2422 regisys?
ユーザー drken1215
提出日時 2023-08-13 15:09:06
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 420 ms / 2,000 ms
コード長 7,223 bytes
コンパイル時間 2,222 ms
コンパイル使用メモリ 213,800 KB
最終ジャッジ日時 2025-02-16 07:49:12
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 61
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
using pint = pair<int, int>;
using pll = pair<long long, long long>;
// Segment Tree
template<class Monoid> struct SegTree {
using Func = function<Monoid(Monoid, Monoid)>;
// core member
int SIZE;
Func F;
Monoid IDENTITY;
// data
int offset;
vector<Monoid> dat;
// constructor
SegTree() {}
SegTree(int n, const Func &f, const Monoid &identity)
: SIZE(n), F(f), IDENTITY(identity) {
offset = 1;
while (offset < n) offset *= 2;
dat.assign(offset * 2, IDENTITY);
}
void init(int n, const Func &f, const Monoid &identity) {
SIZE = n;
F = f;
IDENTITY = identity;
offset = 1;
while (offset < n) offset *= 2;
dat.assign(offset * 2, IDENTITY);
}
int size() const { return SIZE; }
// set, a is 0-indexed //
// build(): O(N)
void set(int a, const Monoid &v) { dat[a + offset] = v; }
void build() {
for (int k = offset - 1; k > 0; --k)
dat[k] = F(dat[k*2], dat[k*2+1]);
}
void build(const vector<Monoid> &vec) {
for (int a = 0; a < vec.size() && a + offset < dat.size(); ++a)
set(a, vec[a]);
build();
}
// update a, a is 0-indexed, O(log N)
void update(int a, const Monoid &v) {
int k = a + offset;
dat[k] = v;
while (k >>= 1) dat[k] = F(dat[k*2], dat[k*2+1]);
}
// get [a, b), a and b are 0-indexed, O(log N)
Monoid get(int a, int b) {
Monoid vleft = IDENTITY, vright = IDENTITY;
for (int left = a + offset, right = b + offset; left < right;
left >>= 1, right >>= 1) {
if (left & 1) vleft = F(vleft, dat[left++]);
if (right & 1) vright = F(dat[--right], vright);
}
return F(vleft, vright);
}
Monoid get_all() { return dat[1]; }
Monoid operator [] (int a) const { return dat[a + offset]; }
// get max r that f(get(l, r)) = True (0-indexed), O(log N)
// f(IDENTITY) need to be True
int max_right(const function<bool(Monoid)> f, int l = 0) {
if (l == SIZE) return SIZE;
l += offset;
Monoid sum = IDENTITY;
do {
while (l % 2 == 0) l >>= 1;
if (!f(F(sum, dat[l]))) {
while (l < offset) {
l = l * 2;
if (f(F(sum, dat[l]))) {
sum = F(sum, dat[l]);
++l;
}
}
return l - offset;
}
sum = F(sum, dat[l]);
++l;
} while ((l & -l) != l); // stop if l = 2^e
return SIZE;
}
// get min l that f(get(l, r)) = True (0-indexed), O(log N)
// f(IDENTITY) need to be True
int min_left(const function<bool(Monoid)> f, int r = -1) {
if (r == 0) return 0;
if (r == -1) r = SIZE;
r += offset;
Monoid sum = IDENTITY;
do {
--r;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(F(dat[r], sum))) {
while (r < offset) {
r = r * 2 + 1;
if (f(F(dat[r], sum))) {
sum = F(dat[r], sum);
--r;
}
}
return r + 1 - offset;
}
sum = F(dat[r], sum);
} while ((r & -r) != r);
return 0;
}
// debug
friend ostream& operator << (ostream &s, const SegTree &seg) {
for (int i = 0; i < seg.size(); ++i) {
s << seg[i];
if (i != seg.size()-1) s << " ";
}
return s;
}
};
#define REP(i, n) for (long long i = 0; i < (long long)(n); ++i)
#define REP2(i, a, b) for (long long i = a; i < (long long)(b); ++i)
#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl
template<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)
{ return s << '<' << P.first << ", " << P.second << '>'; }
template<class T> ostream& operator << (ostream &s, vector<T> P)
{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }
template<class T> ostream& operator << (ostream &s, deque<T> P)
{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }
template<class T> ostream& operator << (ostream &s, vector<vector<T> > P)
{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }
template<class T> ostream& operator << (ostream &s, set<T> P)
{ for(auto it : P) { s << "<" << it << "> "; } return s; }
template<class T> ostream& operator << (ostream &s, multiset<T> P)
{ for(auto it : P) { s << "<" << it << "> "; } return s; }
template<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)
{ for(auto it : P) { s << "<" << it.first << "->" << it.second << "> "; } return s; }
const long long INF = 1LL<<60;
int main() {
int N, M;
cin >> N >> M;
vector<pll> items(N); // {A[i], B[i]}
vector<long long> gen, mma;
for (int i = 0; i < N; ++i) cin >> items[i].first;
for (int i = 0; i < N; ++i) cin >> items[i].second;
for (int i = 0; i < M; ++i) {
long long T, C;
cin >> T >> C;
if (T == 0) gen.push_back(C);
else mma.push_back(C);
}
sort(items.begin(), items.end());
sort(gen.begin(), gen.end());
sort(mma.begin(), mma.end());
// B
using Node = pair<long long, int>; // { or , index}
SegTree<Node> seg_max(N, [&](Node a, Node b){ return max(a, b); }, Node(-INF, -1));
SegTree<Node> seg_min(N, [&](Node a, Node b){ return min(a, b); }, Node(INF, -1));
for (int i = 0; i < N; ++i) {
seg_max.set(i, pll(items[i].second, i));
seg_min.set(i, pll(items[i].second, i));
}
seg_max.build(), seg_min.build();
// gen -> mma
int match = 0;
for (auto v : gen) {
// A[i] <= v B[i] i
int right = upper_bound(items.begin(), items.end(), pll(v, INF)) - items.begin();
auto [max_cost, index] = seg_max.get(0, right);
//
if (index == -1) continue;
++match;
seg_max.update(index, pll(-INF, -1));
seg_min.update(index, pll(INF, -1));
}
for (auto v : mma) {
// B[i] <= v i ()
auto [min_cost, index] = seg_min.get(0, N);
//
if (index == -1 || v < min_cost) continue;
++match;
seg_max.update(index, pll(-INF, -1));
seg_min.update(index, pll(INF, -1));
}
cout << N - match << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0