結果
問題 | No.2410 Nine Numbers |
ユーザー |
|
提出日時 | 2023-08-14 16:46:10 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 61 ms / 2,000 ms |
コード長 | 37,788 bytes |
コンパイル時間 | 3,042 ms |
コンパイル使用メモリ | 227,836 KB |
実行使用メモリ | 86,272 KB |
最終ジャッジ日時 | 2024-11-22 15:46:36 |
合計ジャッジ時間 | 3,885 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 1 |
コンパイルメッセージ
main.cpp: In member function 'std::pair<long long int, long long int> Warabi::diameter::dfs(long long int, long long int, long long int)': main.cpp:426:22: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 426 | auto [to,cost]=e; | ^ main.cpp:428:22: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 428 | auto [crrv,crrd]=dfs(to,v,d+1); | ^ main.cpp: In member function 'std::tuple<long long int, long long int, long long int> Warabi::diameter::get()': main.cpp:445:18: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 445 | auto [s,xxx]=dfs(0,-1,0); | ^ main.cpp:446:18: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 446 | auto [t,D]=dfs(s,-1,0); | ^ main.cpp: In function 'bool Warabi::bellman_ford(const std::vector<std::tuple<long long int, long long int, long long int> >&, long long int, long long int, std::vector<long long int>&)': main.cpp:907:22: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions] 907 | for(auto [from,to,cost]:E){ | ^
ソースコード
/*Hi,I am warabi.Welcome to my coding space.Let me give you a great word of advice."The pen is mightier than the sword"-by Edward Bulwer-Lytton_,,....,,_ _人人人人人人人人人人人人人人人人人人_-''":::::::::::::`''> ゆっくりできるとでも? <ヽ::::::::::::::::::::: ̄^Y^Y^Y^Y^Y^Y^Y^Y^Y^Y ̄|::::::;ノ´ ̄\:::::::::::\_,. -‐ァ __ _____ ______|::::ノ ヽ、ヽr-r'"´ (.__ ,´ _,, '-´ ̄ ̄`-ゝ 、_ イ、_,.!イ_ _,.ヘーァ'二ハ二ヽ、へ,_7 'r ´ ヽ、ン、::::::rー''7コ-‐'"´ ; ', `ヽ/`7 ,'==─- -─==', ir-'ァ'"´/ /! ハ ハ ! iヾ_ノ i イ iゝ、イ人レ/_ルヽイ i |!イ´ ,' | /__,.!/ V 、!__ハ ,' ,ゝ レリイi (ヒ_] ヒ_ン ).| .|、i .||`! !/レi' (ヒ_] ヒ_ン レ'i ノ !Y!"" ,___, "" 「 !ノ i |,' ノ !'" ,___, "' i .レ' L.',. ヽ _ン L」 ノ| .|( ,ハ ヽ _ン 人! | ||ヽ、 ,イ| ||イ| /,.ヘ,)、 )>,、 _____, ,.イ ハ レ ル` ー--─ ´ルレ レ´Take your time.GIVE ME AC!!!!!!!!!!!!!!!!!!!!!!!!!*/#include <bits/stdc++.h>using namespace std;#define ll long long#define ld long double#define V vector#define rep(i,a,b) for(ll i=a;i<b;i++)#define brep(i,a,b) for(ll i=a;i>=b;i--)#define reph(i,vec) for(auto &i:vec)#define FI first#define SE second#define P pair#define PB push_back#define EB emplace_back#define INS insert#define all(vec) vec.begin(),vec.end()#define in(name) ll name;cin >> name#define ins(name) string name;cin >> name;#define inc(name) char name;cin >> name#define ing(name,size,E) vector<vector<ll>> name(size);rep(i,0,E){in(a);in(b);a--;b--;name[a].PB(b);name[b].PB(a);}#define ing_on(name,size,E) vector<vector<long long>> name(size);rep(i,0,E){in(a);in(b);a--;b--;name[a].PB(b);}#define ing_cost(name,size,E) vector<vector<P<ll,ll>>> name(size);rep(i,0,E){in(a);in(b);in(c);a--;b--;name[a].PB({b,c});name[b].PB({a,c});}#define invll(name,size) vector<ll> name(size);reph(i,name)cin >> i#define invvll(name,size1,size2) vector<vector<long long>> name(size1,vector<long long>(size2));reph(v,name)reph(i,v)cin>>i;#define invp(name,size) vector<P<ll,ll>> name(size);for(ll i=0;i<size;i++)cin >> name[i].FI >> name[i].SE#define out(n) cout << (n) << endl#define _out(n) cout << " " << (n) << endl;#define notout(n) cout << (n)#define out_(n) cout << (n) << " "#define set_out(n,k) cout << fixed << setprecision(k) << (n) << endl;#define set_notout(n,k) cout << fixed << setprecision(k) << (n) << endl;#define set_out_(n,k) cout << fixed << setprecision(k) << (n) << " ";#define vout(vec) for(int i=0;i<vec.size();i++)cout<<(i?" ":"")<<(vec[i]);cout<<endl;#define nel cout<<endl;#define getbit(n,k) (((1LL<<(k))&(n))>0)#define g_t(t,a) get<a>(t)#define INF 1000000000000000000ll#define MOD 1000000007#define MOD2 998244353#define CMOD MOD2#define EPS 0.00000001//debug#define bug assert(false);#define debug cout<<"OK Line "<<__LINE__<<endl;////constexpr long double PI=3.14159265358979323846;//templatetemplate<typename T>inline bool chmax(T& a, const T b) { if (a < b) { a = b; return true; }return false; }template<typename T>inline bool chmin(T& a, const T b) { if (a > b) { a = b; return true; }return false; }//namespace Warabi {//常備変数のコーナーV<bool> primes(1e7+5, true);V<ll> prime_list;V<ll> prime_rui(1e7+5, 0LL);V<bool> visiteded(300100);V<bool> afed(300100, false);V<ll> k1(200100, 0ll);V<ll> k2(200100, 0ll);////常備構造体宣言のコーナーclass UnionFind {private:ll NumberOfElements;ll Not1NumberOfelements;public:vector<ll> par;vector<ll> SIZE;void init(ll sz) {par.resize(sz, -1LL);SIZE.resize(sz, 1LL);NumberOfElements = sz;Not1NumberOfelements = 0ll;}ll root(ll pos) {if (par[pos] == -1) return pos;par[pos] = root(par[pos]);return par[pos];}bool same(ll u, ll v) {if (root(u) == root(v)) return true;return false;}ll SZ(ll u) {return SIZE[root(u)];}ll noe() {return NumberOfElements;}ll nnoe() {return Not1NumberOfelements;}bool unite(ll u, ll v) {//頂点番号が大きいほうに統合するu = root(u); v = root(v);if (u == v) {return false;}if (SZ(u) == 1LL and SZ(v) == 1LL)Not1NumberOfelements++;if (u > v)swap(u, v);par[u] = v;SIZE[v] += SIZE[u];NumberOfElements--;return true;}};class SCC {public:V<V<ll>> G;V<V<ll>> UG;V<ll> order;V<ll> GROUP;V<bool> visited;ll sz_count;V<ll> groupsize;void init(ll sz) {G.resize(sz, V<ll>(0));UG.resize(sz, V<ll>(0));GROUP.resize(sz, -1ll);visited.resize(sz, false);sz_count = 0LL;return;}void dfs(ll now) {visited[now] = true;reph(i, G[now]) {if (visited[i])continue;dfs(i);}order.PB(now);return;}void dfs2(ll now, ll group) {GROUP[now] = group;sz_count++;reph(i, UG[now]) {if (GROUP[i] != -1ll and GROUP[i] != group)continue;if (GROUP[i] != -1ll)continue;dfs2(i, group);}return;}void make_group(V<V<ll>> Graph_function) {G = Graph_function;rep(i, 0, (ll)G.size()) {reph(j, G[i]) {UG[j].PB(i);}}rep(i, 0, (ll)G.size()) {if (visited[i])continue;dfs(i);}reverse(all(order));ll now_group = 0LL;reph(i, order) {if (GROUP[i] != -1)continue;ll prev = sz_count;dfs2(i, now_group);now_group++;groupsize.PB(sz_count - prev);}return;}};template<typename X, typename M>class SegmentTree {public:long long sz;using FX = function<X(X, X)>;using FA = function<X(X, M)>;using FM = function<M(M, M)>;const FX fx;const FA fa;const FM fm;const X ex;const M em;vector<X> node;vector<M> lazy;SegmentTree(long long sz_, FX fx_, FA fa_, FM fm_, X ex_, M em_) :sz(), fx(fx_), fa(fa_), fm(fm_), ex(ex_), em(em_) {long long n = 1LL;while (n < sz_)n *= 2;sz = n;node.resize(sz * 2 - 1, ex);lazy.resize(sz * 2 - 1, em);}void set(long long index, X x) {node[index + sz - 1] = x;return;}void build() {for (int i = sz - 2; i >= 0; i--)node[i] = fx(node[i * 2 + 1], node[i * 2 + 2]);return;}void eval(long long k) {if (lazy[k] == em)return;if (k < sz - 1) {lazy[k * 2 + 1] = fm(lazy[k * 2 + 1], lazy[k]);lazy[k * 2 + 2] = fm(lazy[k * 2 + 2], lazy[k]);}node[k] = fa(node[k], lazy[k]);lazy[k] = em;}void update_sub(long long a, long long b, M x, long long k, long long l, long long r) {//cout << " " << a << " " << b << " " << l << " " << r << endl;eval(k);if (a <= l and r <= b) {lazy[k] = fm(lazy[k], x);//cout<<" "<<lazy[k]<<endl;eval(k);return;}else if (a < r and l < b) {update_sub(a, b, x, k * 2 + 1, l, (l + r) / 2);update_sub(a, b, x, k * 2 + 2, (l + r) / 2, r);node[k] = fx(node[k * 2 + 1], node[k * 2 + 2]);return;}return;}void update(long long a, long long b, M x) {update_sub(a, b, x, 0LL, 0LL, sz);return;}void add_sub(long long a, X x, long long k, long long l, long long r) {eval(k);node[k] += x;if (k < sz - 1) {long long mid = (l + r) / 2;if (a < mid)add_sub(a, x, k * 2 + 1, l, mid);else add_sub(a, x, k * 2 + 2, mid, r);}return;}void add(long long a, X x) {add_sub(a, x, 0LL, 0LL, sz);}X query_sub(long long a, long long b, long long k, long long l, long long r) {eval(k);if (r <= a or b <= l)return ex;else if (a <= l and r <= b)return node[k];else {X Xl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2);X Xr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r);//cout<<" / "<<Xl<<" "<<Xr<<endl;return fx(Xl, Xr);}}X query(long long a, long long b) {return query_sub(a, b, 0LL, 0LL, sz);}inline X operator [] (long long index) {return query(index, index + 1);}};template<typename T>class multimap {private:map<T, ll> mp;public:void add(ll x) {mp[x]++;return;}void del(ll x) {mp[x]--;if (mp[x] < 1)mp.erase(x);return;}T maximum() {return mp.rbegin()->first;}T minimum() {return mp.begin()->first;}};class LCA {public:vector<vector<long long>> parent;vector<long long> dist;vector<vector<long long>> G;LCA(const vector<vector<long long>>& gr) { init(gr); }void dfs(long long v, long long p, long long d) {parent[0][v] = p;dist[v] = d;for (long long next : G[v]) {if (next == p)continue;dfs(next, v, d + 1);}return;}void init(const vector<vector<long long>>& gr) {G = gr;parent.assign(33, vector<long long>(G.size(), -1LL));dist.assign(G.size(), -1LL);dfs(0LL, -1LL, 0LL);for (int i = 0; i < 32; i++) {for (int j = 0; j < (int)G.size(); j++) {if (parent[i][j] < 0LL) {parent[i + 1][j] = -1LL;}else {parent[i + 1][j] = parent[i][parent[i][j]];}}}return;}long long lca(long long u, long long v) {if (dist[u] < dist[v])swap(u, v);long long between = dist[u] - dist[v];for (int i = 0; i < 33; i++) {if (between & (1LL << i)) { u = parent[i][u]; }}if (u == v)return u;for (int i = 32; i >= 0; i--) {if (parent[i][u] != parent[i][v]) {u = parent[i][u];v = parent[i][v];}}assert(parent[0][u] == parent[0][v]);return parent[0][u];}long long get_dist(long long u, long long v) {return dist[u] + dist[v] - 2 * dist[lca(u, v)];}bool on_path(long long u, long long v, long long a) {return get_dist(u, v) == get_dist(u, a) + get_dist(v, a);}};class nCk {public:const long long m;const long long MAXIMUM = 2000005;vector<long long> fac, facinv, inv;nCk(long long m_);~nCk();long long com(long long n, long long k)const;};nCk::nCk(long long m_) :m(m_) {fac.resize(MAXIMUM + 3);facinv.resize(MAXIMUM + 3);inv.resize(MAXIMUM + 3);fac[0] = fac[1] = 1;facinv[0] = facinv[1] = 1;inv[1] = 1;for (long long i = 2; i < MAXIMUM + 2; i++) {fac[i] = fac[i - 1] * i % m;inv[i] = m - inv[m % i] * (m / i) % m;facinv[i] = facinv[i - 1] * inv[i] % m;}}nCk::~nCk() {}long long nCk::com(long long n, long long k)const {if (k == 0)return 1;assert(!(n < 0 || k < 0));return fac[n] * (facinv[k] * facinv[n - k] % m) % m;}////常備構造体宣言のコーナー////常備関数のコーナーvoid Yes(bool f) { cout << (f ? "Yes" : "No") << endl; }void YES(bool f) { cout << (f ? "YES" : "NO") << endl; }//木の直径を求めるclass diameter{private:long long N;vector<vector<pair<long long,long long>>> G;pair<long long,long long> dfs(long long v,long long p,long long d){long long Max_v=v,Max_dist=d;for(const pair<long long,long long> &e:G[v]){auto [to,cost]=e;if(to==p)continue;auto [crrv,crrd]=dfs(to,v,d+1);if(Max_dist<crrd){Max_dist=crrd;Max_v=crrv;}}return make_pair(Max_v,Max_dist);}public:diameter(long long n_):N(n_){G.resize(N);}void Add_edge(long long u,long long v,long long c=1){G[u].emplace_back(v,c);G[v].emplace_back(u,c);return;}tuple<long long,long long,long long> get(){auto [s,xxx]=dfs(0,-1,0);auto [t,D]=dfs(s,-1,0);return make_tuple(s,t,D);}};//素数の取得void prime_init(const long long Limit) {V<bool> at(Limit, true);primes = at;primes[0] = primes[1] = false;rep(i, 2, Limit) {if (!primes[i])continue;for (ll j = i * 2; j <= Limit; j += i)primes[j] = false;}rep(i, 1, Limit) {if (primes[i]) {prime_list.PB(i);prime_rui[i] = prime_rui[i - 1] + 1;}else {prime_rui[i] = prime_rui[i - 1];}}return;}//modpowlong long modpow(long long a, long long b, long long m) {long long p = 1, q = a;for (int i = 0; i < 63; i++) {if ((b & (1LL << i)) != 0) {p *= q;p %= m;}q *= q;q %= m;}return p;}//逆元long long Div(long long a, long long b, long long m) {return (a * modpow(b, m - 2, m)) % m;}//点と点の距離を返すlong double Dis(ll ax, ll ay, ll bx, ll by) {return sqrt(pow(ax - bx, 2) + pow(ay - by, 2));}//二つのベクトルから平行四辺形の面積を返すll he(ll x0, ll y0, ll x1, ll y1, ll x2, ll y2) {//外積を二で割るreturn abs((x1 - x0) * (y2 - y0) - (x2 - x0) * (y1 - y0));}//template<typename T>ll Lis_size(V<T> arr, ll sz) {const T TINF = numeric_limits<T>::max();V<T> DP(sz + 1, TINF);DP[0] = -TINF;rep(i, 0, sz) {*lower_bound(all(DP), arr[i]) = arr[i];}ll ans = 0LL;rep(i, 1, sz + 1) {if (DP[i] != TINF)ans = i;}return ans;}string toBinary(ll n) {string r;while (n != 0LL) {r += (n % 2LL == 0LL ? "0" : "1");n /= 2LL;}return r;}template<typename T>V<ll> press(V<T> arr) {V<T> X = arr;sort(all(X));X.erase(unique(all(X)), X.end());V<ll> ans(arr.size());rep(i, 0LL, (ll)arr.size()) {ans[i] = lower_bound(all(X), arr[i]) - X.begin();}return ans;}P<V<V<ll>>, V<V<P<ll, ll>>>> warshall_floyd(ll N, V<V<P<ll, ll>>> G) {V<V<ll>> DP(N, V<ll>(N, INF));rep(i, 0, N)DP[i][i] = 0LL;V<V<P<ll, ll>>> prev(N, V<P<ll, ll>>(N, { INF,INF }));rep(i, 0, N) {reph(j, G[i]) {DP[i][j.FI] = j.SE;prev[i][j.FI] = { i,j.FI };}}rep(k, 0, N) {rep(i, 0, N) {rep(j, 0, N) {if (chmin(DP[i][j], DP[i][k] + DP[k][j])) {prev[i][j] = prev[k][j];}}}}return { DP,prev };}template<typename T>void to_sum(V<T>& arr) {rep(i, 0, (ll)arr.size() - 1LL) {arr[i + 1] += arr[i];}return;}template<typename T>void including_map(ll H, ll W, V<V<T>>& G, T c) {V<V<T>> new_G(H + 2, V<T>(W + 2));rep(i, 0, W + 2)new_G[0][i] = c;rep(i, 1, H + 1) {new_G[i][0] = c;new_G[i][W + 1] = c;rep(j, 1, W + 1) {new_G[i][j] = G[i - 1][j - 1];}}rep(i, 0, W + 2)new_G[H + 1][i] = c;G = new_G;return;}template<typename T> class BIT {private:int n;vector<T> bit;public:// 0_indexed で i 番目の要素に x を加えるvoid add(int i, T x){i++;while(i < n){bit[i] += x, i += i & -i;}}// 0_indexed で [0,i] の要素の和(両閉区間!!)T sum(int i){i++;T s = 0;while(i > 0){s += bit[i], i -= i & -i;}return s;}BIT(){}//初期値がすべて0の場合BIT(int sz) : n(sz+1), bit(n, 0){}BIT(const vector<T>& v) : n((int)v.size()+1), bit(n, 0){for(int i = 0; i < n-1; i++){add(i,v[i]);}}void print(){for(int i = 0; i < n-1; i++){cout << sum(i) - sum(i-1) << " ";}cout << "\n";}//-1スタートvoid print_sum(){for(int i = 0; i < n; i++){cout << sum(i-1) << " ";}cout << "\n";}};// u を昇順にソートするのに必要な交換回数(転倒数) (u は {0,..., n-1} からなる重複を許した長さ n の数列)long long inv_count(const vector<long long>& u,const int Max){int n=u.size();int m=Max;BIT<long long> bt(m);long long ans = 0;for(int i = 0; i < n; i++){ans += i - bt.sum(u[i]);bt.add(u[i], 1);}return ans;}set<ll> factor(ll N) {set<ll> ans;for (ll i = 1LL; i * i <= N; i++) {if (N % i)continue;ans.INS(i);ans.INS(N / i);}return ans;}V<ll> dijkstra(ll sz, V<V<P<ll, ll>>> G, ll s) {V<ll> ans(sz, INF); ans[s] = 0LL;priority_queue<P<ll, ll>, vector<P<ll, ll>>, greater<P<ll, ll>>> examine;examine.push({ 0LL,s });while (examine.size()) {P<ll, ll> p = examine.top();examine.pop();ll now = p.SE, dist = p.FI;if (ans[now] < dist)continue;reph(i, G[now]) {ll next = i.FI, c = i.SE;if (chmin(ans[next], dist + c)) {examine.push({ dist + c,next });}}}return ans;}V<ll> pass(const V<V<ll>>& G, ll s, ll t) {V<ll> ans, res;function<void(ll,ll)> dfs = [&](ll now,ll p) {res.PB(now);if (now == t) {ans = res;}reph(next, G[now]) {if (next==p)continue;dfs(next,now);}res.pop_back();return;};dfs(s,-1);return ans;}// 負の数にも対応した mod (a = -11 とかでも OK)inline long long mod(long long a, long long m) {long long res = a % m;if (res < 0) res += m;return res;}// 拡張 Euclid の互除法long long extGCD(long long a, long long b, long long& p, long long& q) {if (b == 0) { p = 1; q = 0; return a; }long long d = extGCD(b, a % b, q, p);q -= a / b * p;return d;}long long extGcd(long long a, long long b, long long& p, long long& q) {if (b == 0) { p = 1; q = 0; return a; }long long d = extGcd(b, a % b, q, p);q -= a / b * p;return d;}// 逆元計算 (ここでは a と m が互いに素であることが必要)long long modinv(long long a, long long m) {long long x, y;extGCD(a, m, x, y);return mod(x, m); // 気持ち的には x % m だが、x が負かもしれないので}// Garner のアルゴリズム, x%MOD, LCM%MOD を求める (m は互いに素でなければならない)// for each step, we solve "coeffs[k] * t[k] + constants[k] = b[k] (mod. m[k])"// coeffs[k] = m[0]m[1]...m[k-1]// constants[k] = t[0] + t[1]m[0] + ... + t[k-1]m[0]m[1]...m[k-2]long long Garner(vector<long long> b, vector<long long> m, long long Mmod) {m.push_back(Mmod); // banpeivector<long long> coeffs((int)m.size(), 1);vector<long long> constants((int)m.size(), 0);for (int k = 0; k < (int)b.size(); ++k) {long long t = mod((b[k] - constants[k]) * modinv(coeffs[k], m[k]), m[k]);for (int i = k + 1; i < (int)m.size(); ++i) {(constants[i] += t * coeffs[i]) %= m[i];(coeffs[i] *= m[k]) %= m[i];}}return constants.back();}pair<long long, long long> ChineseRem(const vector<long long>& b, const vector<long long>& m) {long long r = 0, M = 1;for (int i = 0; i < (int)b.size(); ++i) {long long p, q;long long d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d)if ((b[i] - r) % d != 0) return make_pair(0, -1);long long tmp = (b[i] - r) / d * p % (m[i] / d);r += M * tmp;M *= m[i] / d;}return make_pair(mod(r, M), M);}map<ll, ll> bunkai(ll n) {map<ll, ll> ans;ll Nn = n;for (int i = 2; i * i <= Nn; i++) {while (n % i == 0) {n /= i;ans[i]++;}}if (n > 1) { ans[n]++; }return ans;}template<typename T>void RLE(vector<T>& arr) {vector<T> res;res.push_back(arr[0]);for (const T t : arr) {if (res.back() != t)res.push_back(t);}arr = res;return;}vector<pair<long long, long long>> EulerTour(const vector<vector<long long>>& G) {long long N = (long long)G.size();vector<pair<long long, long long>> res(N);long long now = 0ll;function<void(long long, long long)> dfs = [&](long long v, long long p) {res[v].first = now;++now;for (const long long next : G[v]) {if (next == p)continue;dfs(next, v);}res[v].second = now;++now;return;};dfs(0, -1ll);return res;}template <typename T>struct BIT2D {int H, W;vector<vector<T>> bit; // データの格納先BIT2D(int H_, int W_) { init(H_, W_); }void init(int H_, int W_) {H = H_ + 1;W = W_ + 1;bit.assign(H, vector<T>(W, 0));}void add(int h, int w, T x) {for (int i = h; i < H; i += (i & -i)) {for (int j = w; j < W; j += (j & -j)) {bit[i][j] += x;}}}// 1≦i≦h かつ 1≦j≦wT sum(int h, int w) {T s(0);for (int i = h; i > 0; i -= (i & -i)) {for (int j = w; j > 0; j -= (j & -j)) {s += bit[i][j];}}return s;}// h1≦i<h2 かつ w1≦j<w2T query(int h1, int w1, int h2, int w2) {return sum(h2 - 1, w2 - 1) - sum(h2 - 1, w1 - 1) - sum(h1 - 1, w2 - 1) + sum(h1 - 1, w1 - 1);}};template<typename T>struct Matrix {vector<vector<T>>A;Matrix() {}Matrix(size_t n,size_t m):A(n,vector<T>(m,0)){}Matrix(size_t n):A(n,vector<T>(n,0)){};size_t height(){return (A.size());}size_t width(){return (A[0].size());}inline const vector<T>&operator[](int k)const{return (A.at(k));}inline vector<T>&operator[](int k){return (A.at(k));}static Matrix E(size_t n){Matrix mat(n);for(int i=0;i<n;i++)mat[i][i]=1;return (mat);}Matrix &operator+=(Matrix&B){size_t n=height(),m=width();for(int i=0;i<n;i++)for(int j=0;j<m;j++)(*this)[i][j]+=B[i][j];return (*this);}Matrix &operator-=(Matrix&B){size_t n=height(),m=width();for(int i=0;i<n;i++)for(int j=0;j<m;j++)(*this)[i][j]-=B[i][j];return (*this);}Matrix &operator*=(Matrix&B) {size_t n=height(),m=B.width(),p=width();vector<vector<T>> C(n,vector<T>(m,0));for(int i=0;i<n;i++)for(int j=0;j<m;j++)for(int k=0;k<p;k++)C[i][j]+=(*this)[i][k]*B[k][j];A.swap(C);return (*this);}Matrix &operator^=(long long k){Matrix B=Matrix::E(height());while(k>0){if(k&1)B*=*this;*this*=*this;k>>=1LL;}A.swap(B.A);return (*this);}Matrix operator+(Matrix&B){return (Matrix(*this)+=B);}Matrix operator-(Matrix &B){return (Matrix(*this)-=B);}Matrix operator*(Matrix&B){return (Matrix(*this)*=B);}Matrix operator^(long long k){return (Matrix(*this)^=k);}};long long BGstep(long long a,long long b,long long p){//solve a^x≡b(mod p) O(√p)long long m=ceil(sqrt(p));map<long long,long long> power;for(int i=m-1;0<=i;i--){power[modpow(a,i,p)]=i;}long long c=Div(1ll,modpow(a,m,p),p);for(int i=0;i<m;i++){long long d=(b*modpow(c,i,p))%p;if(power.count(d))return i*m+power[d];}return -1;}bool bellman_ford(const vector<tuple<long long,long long,long long>> &E,long long N,long long S,vector<long long> &dist){const long long inf=1e9;dist.resize(N,inf);dist[S]=0ll;for(int i=0;i<N;i++){bool end=true;for(auto [from,to,cost]:E){if(dist[from]==inf)continue;if(dist[from]+cost<dist[to]){dist[to]=dist[from]+cost;end=false;}}if(end)return false;}return true;}class TopologicalSort{private:int N;vector<vector<int>> G;public:TopologicalSort(const vector<vector<int>> &g):G(g){};vector<int> order;bool sort(function<bool(int,int)> compare=[](int a,int b){return a<b;}){N=G.size();priority_queue<int,vector<int>,function<bool(int,int)>> pq(compare);vector<int> in_edge(N,0);for(int i=0;i<N;i++){for(const int &nxt:G[i]){in_edge[nxt]++;}}for(int i=0;i<N;i++)if(!in_edge[i])pq.push(i);while(pq.size()){int v=pq.top();pq.pop();order.push_back(v);for(const int &nxt:G[v]){if(--in_edge[nxt])continue;pq.push(nxt);}}return N==(ll)order.size();}};class Doubling{private:const vector<int> G;const int Max;vector<vector<int>> doubling;public:Doubling(const vector<int> g,int m):G(g),Max(m){//2^Max-1int N=G.size();doubling.resize(N);for(int i=0;i<N;i++)doubling[i].resize(Max,-1);for(int i=0;i<N;i++)doubling[i][0]=G[i];for(int i=0;i<Max-1;i++){for(int j=0;j<N;j++)doubling[j][i+1]=doubling[doubling[j][i]][i];}return;};int get(int v,long long K){int ans=v;for(int i=0;i<Max;i++){if(K&(1ll<<i))ans=doubling[ans][i];}return ans;}};//from https://algo-logic.info/tree-dp/#struct Rerooting {/* start 問題ごとに書き換え */struct DP { // DP の型long long black,white;// 全部black/一つでもwhiteを含むDP(long long b,long long w) : black(b),white(w) {}};const DP identity = DP(0,-1e9); // 単位元(末端の値は add_root(identity) になるので注意)function<DP(DP, DP)> merge = [](DP dp_cum, DP d) -> DP {return DP(dp_cum.black+d.black,max(dp_cum.white+max(d.black,d.white),dp_cum.black+d.white));};function<DP(DP)> add_root = [](DP d) -> DP {return DP(d.white+1,max(d.white,d.black));};/* end 問題ごとに書き換え */// グラフの定義struct Edge {int to;};using Graph = vector<vector<Edge>>;vector<vector<DP>> dp; // dp[v][i]: vから出るi番目の有向辺に対応する部分木のDPvector<DP> ans; // ans[v]: 頂点vを根とする木の答えGraph G;Rerooting(int N) : G(N) {dp.resize(N);ans.assign(N, identity);}void add_edge(int a, int b) {G[a].push_back({b});}void build() {dfs(0); // 普通に木DPbfs(0, identity); // 残りの部分木に対応するDPを計算}DP dfs(int v, int p = -1) { // 頂点v, 親pDP dp_cum = identity;int deg = G[v].size();dp[v] = vector<DP>(deg, identity);for (int i = 0; i < deg; i++) {int u = G[v][i].to;if (u == p) continue;dp[v][i] = dfs(u, v);dp_cum = merge(dp_cum, dp[v][i]);}//DP dp_=add_root(dp_cum);//printf("%d\n",v);//printf("{%lld,%lld}\n",dp_.black,dp_.white);return add_root(dp_cum);}void bfs(int v, const DP& dp_p, int p = -1) { // bfs だが、実装が楽なので中身は dfs になっているint deg = G[v].size();for (int i = 0; i < deg; i++) { // 前のbfsで計算した有向辺に対応する部分木のDPを保存if (G[v][i].to == p) dp[v][i] = dp_p;}vector<DP> dp_l(deg + 1, identity), dp_r(deg + 1, identity); // 累積mergefor (int i = 0; i < deg; i++) {dp_l[i + 1] = merge(dp_l[i], dp[v][i]);}for (int i = deg - 1; i >= 0; i--) {dp_r[i] = merge(dp_r[i + 1], dp[v][i]);}ans[v] = add_root(dp_l[deg]); // 頂点 v の答えfor (int i = 0; i < deg; i++) { // 一つ隣の頂点に対しても同様に計算int u = G[v][i].to;if (u == p) continue;bfs(u, add_root(merge(dp_l[i], dp_r[i + 1])), v);}}};}namespace Guest {const int MAX_VAL = 300000;int a[MAX_VAL]; //要素int cnt[MAX_VAL]; //区間内のiの個数int res; //区間内の種類の数class Mo {private:vector<int> left, right;const int width;void add(const int id);void del(const int id);public:vector<int> ans;Mo(const int n) : width((int)sqrt(n)) {}//クエリ[l,r)void insert(const int l, const int r) {left.push_back(l), right.push_back(r);}void solve() {const int sz = (int)left.size();int nl = 0, nr = 0;vector<int> ord(sz);iota(ord.begin(), ord.end(), 0);sort(ord.begin(), ord.end(), [&](const int a, const int b) {const int c = left[a] / width, d = left[b] / width;return (c == d) ? ((c & 1) ? (right[b] < right[a]) : (right[a] < right[b])) : (c < d);});ans.resize(sz);for (const int id : ord) {while (nl > left[id]) add(--nl);while (nr < right[id]) add(nr++);while (nl < left[id]) del(nl++);while (nr > right[id]) del(--nr);ans[id] = res;}}};//idは元の配列のインデックスvoid Mo::add(const int id){res -= cnt[a[id]] / 2;res += (++cnt[a[id]]) / 2;}void Mo::del(const int id){res -= cnt[a[id]] / 2;res += (--cnt[a[id]]) / 2;}constexpr long long mod=MOD2;class mint {long long x;public:mint(long long x=0) : x((x%mod+mod)%mod) {}mint operator-() const {return mint(-x);}mint& operator+=(const mint& a) {if ((x += a.x) >= mod) x -= mod;return *this;}mint& operator-=(const mint& a) {if ((x += mod-a.x) >= mod) x -= mod;return *this;}mint& operator*=(const mint& a) {(x *= a.x) %= mod;return *this;}bool operator==(const mint a){return x==a.x;}mint operator+(const mint& a) const {mint res(*this);return res+=a;}mint operator-(const mint& a) const {mint res(*this);return res-=a;}mint operator*(const mint& a) const {mint res(*this);return res*=a;}mint pow(ll t) const {if (!t) return 1;mint a = pow(t>>1);a *= a;if (t&1) a *= *this;return a;}// for prime modmint inv() const {return pow(mod-2);}mint& operator/=(const mint& a) {return (*this) *= a.inv();}mint operator/(const mint& a) const {mint res(*this);return res/=a;}friend ostream& operator<<(ostream& os, const mint& m){os << m.x;return os;}};struct RollingHash {static const int base1 = 1007, base2 = 2009;static const int mod1 = 1000000007, mod2 = 1000000009;vector<long long> hash1, hash2, power1, power2;// constructRollingHash(const vector<long long> &S) {int n = (int)S.size();hash1.assign(n+1, 0);hash2.assign(n+1, 0);power1.assign(n+1, 1);power2.assign(n+1, 1);for (int i = 0; i < n; ++i) {hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2;power1[i+1] = (power1[i] * base1) % mod1;power2[i+1] = (power2[i] * base2) % mod2;}}// get hash of S[left:right]inline pair<long long, long long> get(int l, int r) const {long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;if (res1 < 0) res1 += mod1;long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2;if (res2 < 0) res2 += mod2;return {res1, res2};}// get lcp of S[a:] and S[b:]inline int getLCP(int a, int b) const {int len = min((int)hash1.size()-a, (int)hash1.size()-b);int low = 0, high = len;while (high - low > 1) {int mid = (low + high) >> 1;if (get(a, a+mid) != get(b, b+mid)) high = mid;else low = mid;}return low;}// get lcp of S[a:] and T[b:]inline int getLCP(const RollingHash &T, int a, int b) const {int len = min((int)hash1.size()-a, (int)hash1.size()-b);int low = 0, high = len;while (high - low > 1) {int mid = (low + high) >> 1;if (get(a, a+mid) != T.get(b, b+mid)) high = mid;else low = mid;}return low;}};}//long long gcd(long long a, long long b) {if (b == 0LL)return a;return gcd(b, a % b);}long long lcm(long long a, long long b) {return a * b / gcd(a, b);}signed main() {/*文章を読み落としていませんか?制約も隅々まで読んでいますか?注意・セグ木のupdate関数はl,rの値を渡したときにl以上r未満の区間だからご注意をrは含みません・BITって1-indexedなんだぜイケてるよな・using namespace Warabi??*///using namespace Warabi;//mintのMODは確認した?rep(i,0,9)out_(pow(3,i));nel;}