結果
問題 | No.2421 entersys? |
ユーザー |
👑 |
提出日時 | 2023-08-15 18:48:32 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,225 ms / 3,000 ms |
コード長 | 24,591 bytes |
コンパイル時間 | 16,324 ms |
コンパイル使用メモリ | 316,248 KB |
最終ジャッジ日時 | 2025-02-16 08:24:16 |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 28 |
ソースコード
#ifdef DEBUG#define _GLIBCXX_DEBUG#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )#define CERR( MESSAGE ) cerr << MESSAGE << endl;#define COUT( ANSWER ) cout << ANSWER << endl#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << (MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )#define LIBRARY_SEARCH bool searched_library = false; LibrarySearch( searched_library ); if( searched_library ){ QUIT; };#define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME )#define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES )#else#pragma GCC optimize ( "O3" )#pragma GCC optimize( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )#define CERR( MESSAGE )#define COUT( ANSWER ) cout << ANSWER << "\n"#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define LIBRARY_SEARCH#define START_WATCH( PROCESS_NAME )#define STOP_WATCH( HOW_MANY_TIMES )#endif// #define RANDOM_TEST#include <bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;using ull = unsigned long long;#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define TYPE_OF( VAR ) decay_t<decltype( VAR )>#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define CIN( LL , A ) LL A; cin >> A#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )#define GETLINE( A ) string A; getline( cin , A )#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define QUIT return 0#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#ifdef DEBUGinline void AlertAbort( int n ) { CERR("abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }void StartWatch( const string& process_name = "nothing" );void StopWatch( const int& how_many_times = 1 );#endif#if defined( DEBUG ) && defined( RANDOM_TEST )inline CEXPR( int , bound_random_test_num , 1000 );#define START_MAIN FOR( random_test_num , 0 , bound_random_test_num ){ CERR( "(" << random_test_num << ")" );ll GetRand( const ll& Rand_min , const ll& Rand_max );#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); continue; } else { CERR( ( ANSWER ) << " != " <<guchoku ); QUIT; }#define FINISH_MAIN CERR( "" ); }#else#define START_MAIN#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT#define FINISH_MAIN#endiftemplate <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }#define POWER( ANSWER , ARGUMENT , EXPONENT ) \static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \{ \TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \static ll ANSWER[CONSTEXPR_LENGTH]; \static ll ANSWER_INV[CONSTEXPR_LENGTH]; \static ll INVERSE[CONSTEXPR_LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_INDEX ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_INDEX ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (MODULO ) ) ) %= ( MODULO ); \} \} \// 二分探索テンプレート// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \if( MINIMUM <= MAXIMUM ){ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "二分探索成功" : "二分探索失敗" ) ); \assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \} else { \CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \assert( MINIMUM <= MAXIMUM ); \} \// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \template <typename T>class CoordinateCompress{private:vector<T> m_a;map<T,int> m_enum;bool m_compressed;int m_size;public:inline CoordinateCompress();template <typename U , int length_max> inline CoordinateCompress( const U ( &a )[length_max] , const int& length );template <typename U> inline CoordinateCompress( const vector<U>& a );inline void Insert( const T& t );template <typename U , int length_max> inline void Insert( const U ( &a )[length_max] , const int& length );template <typename U> inline void Insert( const vector<U>& a );inline const T& GetSmallest( const int& i = 0 );inline const T& GetLargest( const int& i = 0 );inline int GetOrder( const T& t );inline const int& size();inline typename map<T,int>::iterator begin();inline typename map<T,int>::iterator end();private:inline void Compress();};template <typename T> inline CoordinateCompress<T>::CoordinateCompress() : m_a() , m_enum() , m_compressed() , m_size() {}template <typename T> template <typename U , int length_max> inline CoordinateCompress<T>::CoordinateCompress( const U ( &a )[length_max] , constint& length ) : CoordinateCompress() { Insert( a , length ); }template <typename T> template <typename U> inline CoordinateCompress<T>::CoordinateCompress( const vector<U>& a ) : CoordinateCompress() { Insert( a); }template <typename T> inline void CoordinateCompress<T>::Insert( const T& t ) { m_enum[t]; m_size = m_enum.size(); m_compressed = false; }template <typename T> template <typename U , int length_max> inline void CoordinateCompress<T>::Insert( const U ( &a )[length_max] , const int&length ) { assert( length <= length_max ); if( length > 0 ){ for( int i = 0 ; i < length ; i++ ){ m_enum[ a[i] ]; } m_size = m_enum.size();m_compressed = false; } }template <typename T> template <typename U> inline void CoordinateCompress<T>::Insert( const vector<U>& a ) { const int length = a.size(); if( length> 0 ){ for( int i = 0 ; i < length ; i++ ){ m_enum[ a[i] ]; } m_size = m_enum.size(); m_compressed = false; } }template <typename T> inline const T& CoordinateCompress<T>::GetSmallest( const int& i ) { if( ! m_compressed ){ Compress(); } assert( i < m_size );return m_a[i]; }template <typename T> inline const T& CoordinateCompress<T>::GetLargest( const int& i ) { if( ! m_compressed ){ Compress(); } assert( i < m_size );return m_a[m_size - i - 1]; }template <typename T> inline int CoordinateCompress<T>::GetOrder( const T& t ) { if( ! m_compressed ){ Compress(); } return m_enum.count( t ) == 1 ?m_enum[t] : -1; }template <typename T> inline const int& CoordinateCompress<T>::size() { return m_size; }template <typename T> inline typename map<T,int>::iterator CoordinateCompress<T>::begin() { return m_enum.begin(); }template <typename T> inline typename map<T,int>::iterator CoordinateCompress<T>::end() { return m_enum.end(); }template <typename T> inline void CoordinateCompress<T>::Compress() { m_a.resize( m_size ); m_size = 0; for( auto itr = m_enum.begin() , end = m_enum.end() ; itr != end ; itr++ ){ m_a[itr->second = m_size++] = itr->first; } m_compressed = true; }// 配列の各要素がint型の範疇でも総和がそうでない場合はTをint型にすると正しく動作しないことに注意。// InitialSegmentSumで負の入力を扱うためにuintではなくintをテンプレート引数にする。// 使用演算:// T& T::operator=( const T& )// T& T::operator+=( const T& )// T operator-( const T& , const T& )(ただしIntervalSumを用いない場合は不要)// T operator<( const T& , const T& )(ただしBinarySearchを用いない場合は不要)template <typename T , int N>class BIT{private:T m_fenwick[N + 1];public:inline BIT();BIT( const T ( & a )[N] );// const参照でないことに注意。inline T Get( const int& i ) const;inline void Set( const int& i , const T& n );inline void Set( const T ( & a )[N] );inline BIT<T,N>& operator+=( const T ( & a )[N] );void Add( const int& i , const T& n );T InitialSegmentSum( const int& i_final ) const;inline T IntervalSum( const int& i_start , const int& i_final ) const;// operator+=の単位元T()より小さくない要素のみを成分に持つ場合のみサポート。// InitialSegmentSum( i )がn以上となるiが存在する場合にその最小値を2進法で探索。int BinarySearch( const T& n ) const;// IntervalSum( i_start , i )がt以上となるi_start以上のiが存在する場合にその最小値を2進法で探索。inline int BinarySearch( const int& i_start , const T& n ) const;};template <typename T , int N> inline BIT<T,N>::BIT() : m_fenwick() {}template <typename T , int N>BIT<T,N>::BIT( const T ( & a )[N] ) : m_fenwick(){for( int j = 1 ; j <= N ; j++ ){T& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j - ( j & -j );while( i != i_lim ){fenwick_j += m_fenwick[i];i -= ( i & -i );}}}template <typename T , int N> inline T BIT<T,N>::Get( const int& i ) const { return IntervalSum( i , i ); }template <typename T , int N> inline void BIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }template <typename T , int N> inline void BIT<T,N>::Set( const T ( & a )[N] ) { BIT<T,N> a_copy{ a }; swap( m_fenwick , a_copy.m_fenwick ); }template <typename T , int N> inline BIT<T,N>& BIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return*this; }template <typename T , int N>void BIT<T,N>::Add( const int& i , const T& n ){int j = i + 1;while( j <= N ){m_fenwick[j] += n;j += ( j & -j );}return;}template <typename T , int N>T BIT<T,N>::InitialSegmentSum( const int& i_final ) const{T sum = 0;int j = ( i_final < N ? i_final : N - 1 ) + 1;while( j > 0 ){sum += m_fenwick[j];j -= j & -j;}return sum;}template <typename T , int N> inline T BIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum( i_final ) -InitialSegmentSum( i_start - 1 ); }// 使用演算:// T& T::operator=( const T& )(BITそのものに使用)// T& T::operator+=( const T& )// T& operator+( const T& , const T& )// T operator-( const T& )// T operator-( const T& , const T& )template <typename T , int N>class IntervalAddBIT{private:// 母関数の微分の負の階差数列((i-1)a_{i-1} - ia_i)の管理BIT<T,N> m_bit_0;// 階差数列(a_i - a_{i-1})の管理BIT<T,N> m_bit_1;public:inline IntervalAddBIT();inline IntervalAddBIT( const T ( &a )[N] );// const参照でないことに注意。inline T Get( const int& i ) const;inline void Set( const int& i , const T& n );inline void Set( const T ( &a )[N] );inline IntervalAddBIT<T,N>& operator+=( const T ( & a )[N] );inline void Add( const int& i , const T& n );inline void IntervalAdd( const int& i_start , const int& i_final , const T& n );inline T InitialSegmentSum( const int& i_final ) const;inline T IntervalSum( const int& i_start , const int& i_final ) const;};template <typename T , int N> inline IntervalAddBIT<T,N>::IntervalAddBIT() : m_bit_0() , m_bit_1() {}template <typename T , int N> inline IntervalAddBIT<T,N>::IntervalAddBIT( const T ( &a )[N] ) : m_bit_0() , m_bit_1() { operator+=( a ); }template <typename T , int N> inline T IntervalAddBIT<T,N>::Get( const int& i ) const { return IntervalSum( i , i ); }template <typename T , int N> inline void IntervalAddBIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }template <typename T , int N> inline void IntervalAddBIT<T,N>::Set( const T ( &a )[N] ) { IntervalAddBIT<T,N> a_copy{ a }; swap( m_bit_0 , a_copy.m_bit_0 ); swap( m_bit_1 , a_copy.m_bit_1 ); }template <typename T , int N> inline IntervalAddBIT<T,N>& IntervalAddBIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return *this; }template <typename T , int N> inline void IntervalAddBIT<T,N>::Add( const int& i , const T& n ) { IntervalAdd( i , i , n ); }template <typename T , int N> inline void IntervalAddBIT<T,N>::IntervalAdd( const int& i_start , const int& i_final , const T& n ) { m_bit_0.Add(i_start , - ( i_start - 1 ) * n ); m_bit_0.Add( i_final + 1 , i_final * n ); m_bit_1.Add( i_start , n ); m_bit_1.Add( i_final + 1 , - n ); }template <typename T , int N> inline T IntervalAddBIT<T,N>::InitialSegmentSum( const int& i_final ) const { return m_bit_0.InitialSegmentSum( i_final) + i_final * m_bit_1.InitialSegmentSum( i_final ); }template <typename T , int N> inline T IntervalAddBIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum(i_final ) - InitialSegmentSum( i_start - 1 ); }// inline CEXPR( int , bound_N , 10 );inline DEXPR( int , bound_N , 100000 , 100 ); // 0が5個// inline CEXPR( int , bound_N , 1000000000 ); // 0が9個// inline CEXPR( ll , bound_N , 1000000000000000000 ); // 0が18個TYPE_OF( bound_N ) N;// // inline CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );// // inline CEXPR( int , bound_M , 10 );// inline DEXPR( int , bound_M , 100000 , 100 ); // 0が5個// // inline CEXPR( int , bound_M , 1000000000 ); // 0が9個// // inline CEXPR( ll , bound_M , 1000000000000000000 ); // 0が18個// TYPE_OF( bound_M ) M;// inline DEXPR( int , bound_H , 1000 , 10 );// // inline DEXPR( int , bound_H , 100000 , 10 ); // 0が5個// // inline CEXPR( int , bound_H , 1000000000 ); // 0が9個// inline CEXPR( int , bound_W , bound_H );// #if bound_H < ( 1 << 16 )// inline CEXPR( int , bound_HW , bound_H * bound_W );// #else// inline CEXPR( ll , bound_HW , ll( bound_H ) * bound_W );// #endif// // CEXPR( int , bound_HW , 100000 ); // 0が5個// // CEXPR( int , bound_HW , 1000000000 ); // 0が5個// int H , W;// inline int EnumHW( const int& h , const int& w ) { return h * W + w; }// inline pair<int,int> EnumHW_inv( const int& v ) { return { v / W , v % W }; }// inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW(i,j);if(i>0){e[EnumHW(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW(i+1,j)].push_back(v);}if(j>0){e[EnumHW(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW(i,j+1)].push_back(v);}}}}// const string direction[4] = {"U","R","D","L"};// inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}// inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW_inv(v);auto [k,h]=EnumHW_inv(w);return DirectionNumberOnGrid(i,j,k,h);}// inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}// list<int> e[bound_N];// // list<int> e[bound_HW];// list<int> E( const int& i )// {// list<int> answer = e[i];// // 入力によらない処理// return answer;// }// template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }// template <typename T> inline const T& zero() { static const T z = 0; return z; }// template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }// template <typename T> inline const T& one() { static const T o = 1; return o; }// inline CEXPR( ll , P , 998244353 );// inline CEXPR( ll , P , 1000000007 );int main(){UNTIE;LIBRARY_SEARCH;START_MAIN;// DEXPR( int , bound_T , 100000 , 100 );// CIN_ASSERT( T , 1 , bound_T );// REPEAT( T ){// }// CIN( int , N );// // CIN( ll , N );SET_ASSERT( N , 1 , bound_N );// // CIN( int , M );// // CIN( ll , M );// SET_ASSERT( M , 1 , bound_M );// // CIN( int , K );// // CIN( ll , K );tuple<string,int,int> info[bound_N];map<string,CoordinateCompress<int> > cc{};CoordinateCompress<int> all_cc{};FOR( i , 0 , N ){CIN( string , X );CIN( int , L );CIN( int , R );info[i] = { X , L , R };auto& cc_X = cc[X];cc_X.Insert( L );cc_X.Insert( R );all_cc.Insert( L );all_cc.Insert( R );}// CIN( string , S );// CIN( string , T );// SET_ASSERT( H , 1 , bound_H );// SET_ASSERT( W , 1 , bound_W );// TYPE_OF( bound_HW ) HW = TYPE_OF( bound_HW )( H ) * W;// assert( HW <= bound_HW );// // CEXPR( int , bound_Ai , 10 );// // CEXPR( int , bound_Ai , 100000 ); // 0が5個// CEXPR( int , bound_Ai , 1000000000 ); // 0が9個// // CEXPR( ll , bound_Ai , 1000000000000000000 ); // 0が18個// // CEXPR( int , bound_Bi , bound_Ai );// int A[N];// ll A[N];// // int A[bound_N];// // ll A[bound_N];// int B[N];// // ll B[N];// // int B[bound_N];// // ll B[bound_N];// FOR( i , 0 , N ){// CIN( int , Ai );// // CIN( ll , Ai );// // CIN_ASSERT( Ai , 0 , bound_Ai );// A[i] = Ai;// CIN( int , Bi );// // CIN( ll , Bi );// // CIN_ASSERT( Bi , 0 , bound_Bi );// B[i] = Bi;// }// FOR( i , 0 , M ){// CIN_ASSERT( ui , 1 , N );// CIN_ASSERT( vi , 1 , N );// ui--;// vi--;// e[ui].push_back( vi );// e[vi].push_back( ui );// }// CIN( int , Q );DEXPR( int , bound_Q , 100000 , 100 );CIN_ASSERT( Q , 1 , bound_Q );tuple<int,string,int,int> query[bound_Q];FOR( q , 0 , Q ){CIN( int , type );if( type == 1 ){CIN( string , x );CIN( int , t );cc[x].Insert( t );all_cc.Insert( t );query[q] = { type , x , t , 0 };} else if( type == 2 ){CIN( int , t );all_cc.Insert( t );query[q] = { type , "" , t , 0 };} else {CIN( string , x );CIN( int , l );CIN( int , r );auto& cc_x = cc[x];cc_x.Insert( l );cc_x.Insert( r );all_cc.Insert( l );all_cc.Insert( r );query[q] = { type , x , l , r };}}map<string,int> diff{};int length = 0;FOR_ITR( cc ){diff[itr->first] = length;length += itr->second.size();}IntervalAddBIT<int,(bound_N+bound_Q)*2> come{};IntervalAddBIT<int,(bound_N+bound_Q)*2> count{};FOR( i , 0 , N ){auto& [X,L,R] = info[i];auto& cc_X = cc[X];int& diff_X = diff[X];come.IntervalAdd( cc_X.GetOrder( L ) + diff_X , cc_X.GetOrder( R ) + diff_X , 1 );count.IntervalAdd( all_cc.GetOrder( L ) , all_cc.GetOrder( R ) , 1 );}FOR( q , 0 , Q ){auto& [type,x,l,r] = query[q];if( type == 1 ){l = cc[x].GetOrder( l ) + diff[x];COUT( ( come.IntervalSum( l , l ) > 0 ? "Yes" : "No" ) );} else if( type == 2 ){l = all_cc.GetOrder( l );COUT( ( count.IntervalSum( l , l ) ) );} else {int& diff_x = diff[x];auto& cc_x = cc[x];come.IntervalAdd( cc_x.GetOrder( l ) + diff_x, cc_x.GetOrder( r ) + diff_x , 1 );count.IntervalAdd( all_cc.GetOrder( l ) , all_cc.GetOrder( r ) , 1 );}}// ll guchoku = Guchoku();// ll answer = 0;// if( answer == guchoku ){// CERR( answer << " == " << guchoku );// } else {// CERR( answer << " != " << guchoku );// QUIT;// }// COUT( ( answer ) );FINISH_MAIN;QUIT;}