結果

問題 No.2421 entersys?
ユーザー 👑 p-adic
提出日時 2023-08-15 18:48:32
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,225 ms / 3,000 ms
コード長 24,591 bytes
コンパイル時間 16,324 ms
コンパイル使用メモリ 316,248 KB
最終ジャッジ日時 2025-02-16 08:24:16
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( MESSAGE ) cerr << MESSAGE << endl;
#define COUT( ANSWER ) cout << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << (
      MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH bool searched_library = false; LibrarySearch( searched_library ); if( searched_library ){ QUIT; };
#define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES )
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( MESSAGE )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH
#define START_WATCH( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES )
#endif
// #define RANDOM_TEST
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void StartWatch( const string& process_name = "nothing" );
void StopWatch( const int& how_many_times = 1 );
#endif
#if defined( DEBUG ) && defined( RANDOM_TEST )
inline CEXPR( int , bound_random_test_num , 1000 );
#define START_MAIN FOR( random_test_num , 0 , bound_random_test_num ){ CERR( "(" << random_test_num << ")" );
ll GetRand( const ll& Rand_min , const ll& Rand_max );
#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )
#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); continue; } else { CERR( ( ANSWER ) << " != " <<
      guchoku ); QUIT; }
#define FINISH_MAIN CERR( "" ); }
#else
#define START_MAIN
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT
#define FINISH_MAIN
#endif
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<
          TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (
        EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \
CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "" : "" ) ); \
assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \
} else { \
CERR( " " << MINIMUM << ">" << MAXIMUM ); \
assert( MINIMUM <= MAXIMUM ); \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
template <typename T>
class CoordinateCompress
{
private:
vector<T> m_a;
map<T,int> m_enum;
bool m_compressed;
int m_size;
public:
inline CoordinateCompress();
template <typename U , int length_max> inline CoordinateCompress( const U ( &a )[length_max] , const int& length );
template <typename U> inline CoordinateCompress( const vector<U>& a );
inline void Insert( const T& t );
template <typename U , int length_max> inline void Insert( const U ( &a )[length_max] , const int& length );
template <typename U> inline void Insert( const vector<U>& a );
inline const T& GetSmallest( const int& i = 0 );
inline const T& GetLargest( const int& i = 0 );
inline int GetOrder( const T& t );
inline const int& size();
inline typename map<T,int>::iterator begin();
inline typename map<T,int>::iterator end();
private:
inline void Compress();
};
template <typename T> inline CoordinateCompress<T>::CoordinateCompress() : m_a() , m_enum() , m_compressed() , m_size() {}
template <typename T> template <typename U , int length_max> inline CoordinateCompress<T>::CoordinateCompress( const U ( &a )[length_max] , const
    int& length ) : CoordinateCompress() { Insert( a , length ); }
template <typename T> template <typename U> inline CoordinateCompress<T>::CoordinateCompress( const vector<U>& a ) : CoordinateCompress() { Insert( a
    ); }
template <typename T> inline void CoordinateCompress<T>::Insert( const T& t ) { m_enum[t]; m_size = m_enum.size(); m_compressed = false; }
template <typename T> template <typename U , int length_max> inline void CoordinateCompress<T>::Insert( const U ( &a )[length_max] , const int&
    length ) { assert( length <= length_max ); if( length > 0 ){ for( int i = 0 ; i < length ; i++ ){ m_enum[ a[i] ]; } m_size = m_enum.size();
    m_compressed = false; } }
template <typename T> template <typename U> inline void CoordinateCompress<T>::Insert( const vector<U>& a ) { const int length = a.size(); if( length
    > 0 ){ for( int i = 0 ; i < length ; i++ ){ m_enum[ a[i] ]; } m_size = m_enum.size(); m_compressed = false; } }
template <typename T> inline const T& CoordinateCompress<T>::GetSmallest( const int& i ) { if( ! m_compressed ){ Compress(); } assert( i < m_size );
    return m_a[i]; }
template <typename T> inline const T& CoordinateCompress<T>::GetLargest( const int& i ) { if( ! m_compressed ){ Compress(); } assert( i < m_size );
    return m_a[m_size - i - 1]; }
template <typename T> inline int CoordinateCompress<T>::GetOrder( const T& t ) { if( ! m_compressed ){ Compress(); } return m_enum.count( t ) == 1 ?
    m_enum[t] : -1; }
template <typename T> inline const int& CoordinateCompress<T>::size() { return m_size; }
template <typename T> inline typename map<T,int>::iterator CoordinateCompress<T>::begin() { return m_enum.begin(); }
template <typename T> inline typename map<T,int>::iterator CoordinateCompress<T>::end() { return m_enum.end(); }
template <typename T> inline void CoordinateCompress<T>::Compress() { m_a.resize( m_size ); m_size = 0; for( auto itr = m_enum.begin() , end = m_enum
    .end() ; itr != end ; itr++ ){ m_a[itr->second = m_size++] = itr->first; } m_compressed = true; }
// intTint
// InitialSegmentSumuintint
// 使
// T& T::operator=( const T& )
// T& T::operator+=( const T& )
// T operator-( const T& , const T& )IntervalSum
// T operator<( const T& , const T& )BinarySearch
template <typename T , int N>
class BIT
{
private:
T m_fenwick[N + 1];
public:
inline BIT();
BIT( const T ( & a )[N] );
// const
inline T Get( const int& i ) const;
inline void Set( const int& i , const T& n );
inline void Set( const T ( & a )[N] );
inline BIT<T,N>& operator+=( const T ( & a )[N] );
void Add( const int& i , const T& n );
T InitialSegmentSum( const int& i_final ) const;
inline T IntervalSum( const int& i_start , const int& i_final ) const;
// operator+=T()
// InitialSegmentSum( i )ni2
int BinarySearch( const T& n ) const;
// IntervalSum( i_start , i )ti_starti2
inline int BinarySearch( const int& i_start , const T& n ) const;
};
template <typename T , int N> inline BIT<T,N>::BIT() : m_fenwick() {}
template <typename T , int N>
BIT<T,N>::BIT( const T ( & a )[N] ) : m_fenwick()
{
for( int j = 1 ; j <= N ; j++ ){
T& fenwick_j = m_fenwick[j];
int i = j - 1;
fenwick_j = a[i];
int i_lim = j - ( j & -j );
while( i != i_lim ){
fenwick_j += m_fenwick[i];
i -= ( i & -i );
}
}
}
template <typename T , int N> inline T BIT<T,N>::Get( const int& i ) const { return IntervalSum( i , i ); }
template <typename T , int N> inline void BIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }
template <typename T , int N> inline void BIT<T,N>::Set( const T ( & a )[N] ) { BIT<T,N> a_copy{ a }; swap( m_fenwick , a_copy.m_fenwick ); }
template <typename T , int N> inline BIT<T,N>& BIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return
    *this; }
template <typename T , int N>
void BIT<T,N>::Add( const int& i , const T& n )
{
int j = i + 1;
while( j <= N ){
m_fenwick[j] += n;
j += ( j & -j );
}
return;
}
template <typename T , int N>
T BIT<T,N>::InitialSegmentSum( const int& i_final ) const
{
T sum = 0;
int j = ( i_final < N ? i_final : N - 1 ) + 1;
while( j > 0 ){
sum += m_fenwick[j];
j -= j & -j;
}
return sum;
}
template <typename T , int N> inline T BIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum( i_final ) -
    InitialSegmentSum( i_start - 1 ); }
// 使
// T& T::operator=( const T& )BIT使
// T& T::operator+=( const T& )
// T& operator+( const T& , const T& )
// T operator-( const T& )
// T operator-( const T& , const T& )
template <typename T , int N>
class IntervalAddBIT
{
private:
// (i-1)a_{i-1} - ia_i
BIT<T,N> m_bit_0;
// a_i - a_{i-1}
BIT<T,N> m_bit_1;
public:
inline IntervalAddBIT();
inline IntervalAddBIT( const T ( &a )[N] );
// const
inline T Get( const int& i ) const;
inline void Set( const int& i , const T& n );
inline void Set( const T ( &a )[N] );
inline IntervalAddBIT<T,N>& operator+=( const T ( & a )[N] );
inline void Add( const int& i , const T& n );
inline void IntervalAdd( const int& i_start , const int& i_final , const T& n );
inline T InitialSegmentSum( const int& i_final ) const;
inline T IntervalSum( const int& i_start , const int& i_final ) const;
};
template <typename T , int N> inline IntervalAddBIT<T,N>::IntervalAddBIT() : m_bit_0() , m_bit_1() {}
template <typename T , int N> inline IntervalAddBIT<T,N>::IntervalAddBIT( const T ( &a )[N] ) : m_bit_0() , m_bit_1() { operator+=( a ); }
template <typename T , int N> inline T IntervalAddBIT<T,N>::Get( const int& i ) const { return IntervalSum( i , i ); }
template <typename T , int N> inline void IntervalAddBIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }
template <typename T , int N> inline void IntervalAddBIT<T,N>::Set( const T ( &a )[N] ) { IntervalAddBIT<T,N> a_copy{ a }; swap( m_bit_0 , a_copy
    .m_bit_0 ); swap( m_bit_1 , a_copy.m_bit_1 ); }
template <typename T , int N> inline IntervalAddBIT<T,N>& IntervalAddBIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add
    ( i , a[i] ); } return *this; }
template <typename T , int N> inline void IntervalAddBIT<T,N>::Add( const int& i , const T& n ) { IntervalAdd( i , i , n ); }
template <typename T , int N> inline void IntervalAddBIT<T,N>::IntervalAdd( const int& i_start , const int& i_final , const T& n ) { m_bit_0.Add(
    i_start , - ( i_start - 1 ) * n ); m_bit_0.Add( i_final + 1 , i_final * n ); m_bit_1.Add( i_start , n ); m_bit_1.Add( i_final + 1 , - n ); }
template <typename T , int N> inline T IntervalAddBIT<T,N>::InitialSegmentSum( const int& i_final ) const { return m_bit_0.InitialSegmentSum( i_final
    ) + i_final * m_bit_1.InitialSegmentSum( i_final ); }
template <typename T , int N> inline T IntervalAddBIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum(
    i_final ) - InitialSegmentSum( i_start - 1 ); }
// inline CEXPR( int , bound_N , 10 );
inline DEXPR( int , bound_N , 100000 , 100 ); // 05
// inline CEXPR( int , bound_N , 1000000000 ); // 09
// inline CEXPR( ll , bound_N , 1000000000000000000 ); // 018
TYPE_OF( bound_N ) N;
// // inline CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );
// // inline CEXPR( int , bound_M , 10 );
// inline DEXPR( int , bound_M , 100000 , 100 ); // 05
// // inline CEXPR( int , bound_M , 1000000000 ); // 09
// // inline CEXPR( ll , bound_M , 1000000000000000000 ); // 018
// TYPE_OF( bound_M ) M;
// inline DEXPR( int , bound_H , 1000 , 10 );
// // inline DEXPR( int , bound_H , 100000 , 10 ); // 05
// // inline CEXPR( int , bound_H , 1000000000 ); // 09
// inline CEXPR( int , bound_W , bound_H );
// #if bound_H < ( 1 << 16 )
// inline CEXPR( int , bound_HW , bound_H * bound_W );
// #else
// inline CEXPR( ll , bound_HW , ll( bound_H ) * bound_W );
// #endif
// // CEXPR( int , bound_HW , 100000 ); // 05
// // CEXPR( int , bound_HW , 1000000000 ); // 05
// int H , W;
// inline int EnumHW( const int& h , const int& w ) { return h * W + w; }
// inline pair<int,int> EnumHW_inv( const int& v ) { return { v / W , v % W }; }
// inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]
    ==walkable){int v = EnumHW(i,j);if(i>0){e[EnumHW(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW(i+1,j)].push_back(v);}if(j>0){e[EnumHW(i,j-1)]
    .push_back(v);}if(j+1<W){e[EnumHW(i,j+1)].push_back(v);}}}}
// const string direction[4] = {"U","R","D","L"};
// inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW_inv(v);auto [k,h]=EnumHW_inv(w);return DirectionNumberOnGrid(i,j
    ,k,h);}
// inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
// list<int> e[bound_N];
// // list<int> e[bound_HW];
// list<int> E( const int& i )
// {
// list<int> answer = e[i];
// //
// return answer;
// }
// template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }
// template <typename T> inline const T& zero() { static const T z = 0; return z; }
// template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
// template <typename T> inline const T& one() { static const T o = 1; return o; }
// inline CEXPR( ll , P , 998244353 );
// inline CEXPR( ll , P , 1000000007 );
int main()
{
UNTIE;
LIBRARY_SEARCH;
START_MAIN;
// DEXPR( int , bound_T , 100000 , 100 );
// CIN_ASSERT( T , 1 , bound_T );
// REPEAT( T ){
// }
// CIN( int , N );
// // CIN( ll , N );
SET_ASSERT( N , 1 , bound_N );
// // CIN( int , M );
// // CIN( ll , M );
// SET_ASSERT( M , 1 , bound_M );
// // CIN( int , K );
// // CIN( ll , K );
tuple<string,int,int> info[bound_N];
map<string,CoordinateCompress<int> > cc{};
CoordinateCompress<int> all_cc{};
FOR( i , 0 , N ){
CIN( string , X );
CIN( int , L );
CIN( int , R );
info[i] = { X , L , R };
auto& cc_X = cc[X];
cc_X.Insert( L );
cc_X.Insert( R );
all_cc.Insert( L );
all_cc.Insert( R );
}
// CIN( string , S );
// CIN( string , T );
// SET_ASSERT( H , 1 , bound_H );
// SET_ASSERT( W , 1 , bound_W );
// TYPE_OF( bound_HW ) HW = TYPE_OF( bound_HW )( H ) * W;
// assert( HW <= bound_HW );
// // CEXPR( int , bound_Ai , 10 );
// // CEXPR( int , bound_Ai , 100000 ); // 05
// CEXPR( int , bound_Ai , 1000000000 ); // 09
// // CEXPR( ll , bound_Ai , 1000000000000000000 ); // 018
// // CEXPR( int , bound_Bi , bound_Ai );
// int A[N];
// ll A[N];
// // int A[bound_N];
// // ll A[bound_N];
// int B[N];
// // ll B[N];
// // int B[bound_N];
// // ll B[bound_N];
// FOR( i , 0 , N ){
// CIN( int , Ai );
// // CIN( ll , Ai );
// // CIN_ASSERT( Ai , 0 , bound_Ai );
// A[i] = Ai;
// CIN( int , Bi );
// // CIN( ll , Bi );
// // CIN_ASSERT( Bi , 0 , bound_Bi );
// B[i] = Bi;
// }
// FOR( i , 0 , M ){
// CIN_ASSERT( ui , 1 , N );
// CIN_ASSERT( vi , 1 , N );
// ui--;
// vi--;
// e[ui].push_back( vi );
// e[vi].push_back( ui );
// }
// CIN( int , Q );
DEXPR( int , bound_Q , 100000 , 100 );
CIN_ASSERT( Q , 1 , bound_Q );
tuple<int,string,int,int> query[bound_Q];
FOR( q , 0 , Q ){
CIN( int , type );
if( type == 1 ){
CIN( string , x );
CIN( int , t );
cc[x].Insert( t );
all_cc.Insert( t );
query[q] = { type , x , t , 0 };
} else if( type == 2 ){
CIN( int , t );
all_cc.Insert( t );
query[q] = { type , "" , t , 0 };
} else {
CIN( string , x );
CIN( int , l );
CIN( int , r );
auto& cc_x = cc[x];
cc_x.Insert( l );
cc_x.Insert( r );
all_cc.Insert( l );
all_cc.Insert( r );
query[q] = { type , x , l , r };
}
}
map<string,int> diff{};
int length = 0;
FOR_ITR( cc ){
diff[itr->first] = length;
length += itr->second.size();
}
IntervalAddBIT<int,(bound_N+bound_Q)*2> come{};
IntervalAddBIT<int,(bound_N+bound_Q)*2> count{};
FOR( i , 0 , N ){
auto& [X,L,R] = info[i];
auto& cc_X = cc[X];
int& diff_X = diff[X];
come.IntervalAdd( cc_X.GetOrder( L ) + diff_X , cc_X.GetOrder( R ) + diff_X , 1 );
count.IntervalAdd( all_cc.GetOrder( L ) , all_cc.GetOrder( R ) , 1 );
}
FOR( q , 0 , Q ){
auto& [type,x,l,r] = query[q];
if( type == 1 ){
l = cc[x].GetOrder( l ) + diff[x];
COUT( ( come.IntervalSum( l , l ) > 0 ? "Yes" : "No" ) );
} else if( type == 2 ){
l = all_cc.GetOrder( l );
COUT( ( count.IntervalSum( l , l ) ) );
} else {
int& diff_x = diff[x];
auto& cc_x = cc[x];
come.IntervalAdd( cc_x.GetOrder( l ) + diff_x, cc_x.GetOrder( r ) + diff_x , 1 );
count.IntervalAdd( all_cc.GetOrder( l ) , all_cc.GetOrder( r ) , 1 );
}
}
// ll guchoku = Guchoku();
// ll answer = 0;
// if( answer == guchoku ){
// CERR( answer << " == " << guchoku );
// } else {
// CERR( answer << " != " << guchoku );
// QUIT;
// }
// COUT( ( answer ) );
FINISH_MAIN;
QUIT;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0