結果

問題 No.2546 Many Arithmetic Sequences
ユーザー kaichou243
提出日時 2023-08-18 11:50:46
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 105 ms / 2,000 ms
コード長 25,020 bytes
コンパイル時間 3,514 ms
コンパイル使用メモリ 325,244 KB
最終ジャッジ日時 2025-02-16 09:03:53
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include <immintrin.h>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
#define all(v) (v).begin(), (v).end()
using namespace std;
using ll=long long;
using P = pair<ll,ll>;
const long double PI=acos(-1);
const ll INF=1e18;
const int inf=1e9;
template< uint32_t mod, bool fast = false >
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for(i32 i = 0; i < 4; i++) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 a;
MontgomeryModInt() : a{} {}
MontgomeryModInt(const i64 &x)
: a(reduce(u64(fast ? x : (x % mod + mod)) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32);
}
constexpr mint& operator+=(const mint &p) {
if(i32(a += p.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint& operator-=(const mint &p) {
if(i32(a -= p.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint& operator*=(const mint &p) {
a = reduce(u64(a) * p.a);
return *this;
}
constexpr mint& operator/=(const mint &p) {
*this *= modinv(p);
return *this;
}
constexpr mint operator-() const { return mint() - *this; }
constexpr mint operator+(const mint &p) const { return mint(*this) += p; }
constexpr mint operator-(const mint &p) const { return mint(*this) -= p; }
constexpr mint operator*(const mint &p) const { return mint(*this) *= p; }
constexpr mint operator/(const mint &p) const { return mint(*this) /= p; }
constexpr bool operator==(const mint &p) const { return (a >= mod ? a - mod : a) == (p.a >= mod ? p.a - mod : p.a); }
constexpr bool operator!=(const mint &p) const { return (a >= mod ? a - mod : a) != (p.a >= mod ? p.a - mod : p.a); }
u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
friend constexpr MontgomeryModInt<mod> modpow(const MontgomeryModInt<mod> &x,u64 n) noexcept {
MontgomeryModInt<mod> ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend constexpr MontgomeryModInt<mod> modinv(const MontgomeryModInt<mod> &r) noexcept {
u64 a = r.get(), b = mod, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
return MontgomeryModInt<mod>(u);
}
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.get();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 getmod() { return mod; }
};
//fast Input by yosupo
#include <unistd.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
#include <cstring>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
namespace fastio{
/*
quote from yosupo's submission in Library Checker
*/
int bsr(unsigned int n) {
return 8 * (int)sizeof(unsigned int) - 1 - __builtin_clz(n);
}
// @param n `1 <= n`
// @return maximum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsr(unsigned long n) {
return 8 * (int)sizeof(unsigned long) - 1 - __builtin_clzl(n);
}
// @param n `1 <= n`
// @return maximum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsr(unsigned long long n) {
return 8 * (int)sizeof(unsigned long long) - 1 - __builtin_clzll(n);
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsr(unsigned __int128 n) {
unsigned long long low = (unsigned long long)(n);
unsigned long long high = (unsigned long long)(n >> 64);
return high ? 127 - __builtin_clzll(high) : 63 - __builtin_ctzll(low);
}
namespace internal {
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
internal::is_signed_int128<T>::value ||
internal::is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
template <class T>
using is_integral_t = std::enable_if_t<is_integral<T>::value>;
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
struct Scanner {
public:
Scanner(const Scanner&) = delete;
Scanner& operator=(const Scanner&) = delete;
Scanner(FILE* fp) : fd(fileno(fp)) {}
void read() {}
template <class H, class... T> void read(H& h, T&... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
int read_unsafe() { return 0; }
template <class H, class... T> int read_unsafe(H& h, T&... t) {
bool f = read_single(h);
if (!f) return 0;
return 1 + read_unsafe(t...);
}
int close() { return ::close(fd); }
private:
static constexpr int SIZE = 1 << 15;
int fd = -1;
std::array<char, SIZE + 1> line;
int st = 0, ed = 0;
bool eof = false;
bool read_single(std::string& ref) {
if (!skip_space()) return false;
ref = "";
while (true) {
char c = top();
if (c <= ' ') break;
ref += c;
st++;
}
return true;
}
bool read_single(double& ref) {
std::string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
template <class T,
std::enable_if_t<std::is_same<T, char>::value>* = nullptr>
bool read_single(T& ref) {
if (!skip_space<50>()) return false;
ref = top();
st++;
return true;
}
template <class T,
internal::is_signed_int_t<T>* = nullptr,
std::enable_if_t<!std::is_same<T, char>::value>* = nullptr>
bool read_single(T& sref) {
using U = internal::to_unsigned_t<T>;
if (!skip_space<50>()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
U ref = 0;
do {
ref = 10 * ref + (line[st++] & 0x0f);
} while (line[st] >= '0');
sref = neg ? -ref : ref;
return true;
}
template <class U,
internal::is_unsigned_int_t<U>* = nullptr,
std::enable_if_t<!std::is_same<U, char>::value>* = nullptr>
bool read_single(U& ref) {
if (!skip_space<50>()) return false;
ref = 0;
do {
ref = 10 * ref + (line[st++] & 0x0f);
} while (line[st] >= '0');
return true;
}
bool reread() {
if (ed - st >= 50) return true;
if (st > SIZE / 2) {
std::memmove(line.data(), line.data() + st, ed - st);
ed -= st;
st = 0;
}
if (eof) return false;
auto u = ::read(fd, line.data() + ed, SIZE - ed);
if (u == 0) {
eof = true;
line[ed] = '\0';
u = 1;
}
ed += int(u);
line[ed] = char(127);
return true;
}
char top() {
if (st == ed) {
bool f = reread();
assert(f);
}
return line[st];
}
template <int TOKEN_LEN = 0>
bool skip_space() {
while (true) {
while (line[st] <= ' ') st++;
if (ed - st > TOKEN_LEN) return true;
if (st > ed) st = ed;
for (auto i = st; i < ed; i++) {
if (line[i] <= ' ') return true;
}
if (!reread()) return false;
}
}
};
//fast Output by ei1333
/**
* @brief Printer()
*/
struct Printer {
public:
explicit Printer(FILE *fp) : fp(fp) {}
~Printer() { flush(); }
template< bool f = false, typename T, typename... E >
void write(const T &t, const E &... e) {
if(f) write_single(' ');
write_single(t);
write< true >(e...);
}
template< typename... T >
void writeln(const T &...t) {
write(t...);
write_single('\n');
}
void flush() {
fwrite(line, 1, st - line, fp);
st = line;
}
private:
FILE *fp = nullptr;
static constexpr size_t line_size = 1 << 16;
static constexpr size_t int_digits = 20;
char line[line_size + 1] = {};
char small[32] = {};
char *st = line;
template< bool f = false >
void write() {}
void write_single(const char &t) {
if(st + 1 >= line + line_size) flush();
*st++ = t;
}
template< typename T, enable_if_t< is_integral< T >::value, int > = 0 >
void write_single(T s) {
if(st + int_digits >= line + line_size) flush();
if(s == 0) {
write_single('0');
return;
}
if(s < 0) {
write_single('-');
s = -s;
}
char *mp = small + sizeof(small);
typename make_unsigned< T >::type y = s;
size_t len = 0;
while(y > 0) {
*--mp = y % 10 + '0';
y /= 10;
++len;
}
memmove(st, mp, len);
st += len;
}
void write_single(const string &s) {
for(auto &c : s) write_single(c);
}
void write_single(const char *s) {
while(*s != 0) write_single(*s++);
}
template< typename T >
void write_single(const vector< T > &s) {
for(size_t i = 0; i < s.size(); i++) {
if(i) write_single(' ');
write_single(s[i]);
}
}
};
}; //namespace fastio
using u64=unsigned long long;
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
struct modint61 {
static constexpr bool is_modint = true;
static constexpr ll mod = (1LL << 61) - 1;
ll val;
constexpr modint61(const ll x = 0) : val(x) {
while (val < 0) val += mod;
while (val >= mod) val -= mod;
}
bool operator<(const modint61 &other) const {
return val < other.val;
} // To use std::map
bool operator==(const modint61 &p) const { return val == p.val; }
bool operator!=(const modint61 &p) const { return val != p.val; }
modint61 &operator+=(const modint61 &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint61 &operator-=(const modint61 &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint61 &operator*=(const modint61 &p) {
ll a = val, b = p.val;
const ll MASK30 = (1LL << 30) - 1;
const ll MASK31 = (1LL << 31) - 1;
const ll MASK61 = (1LL << 61) - 1;
ll au = a >> 31, ad = a & MASK31;
ll bu = b >> 31, bd = b & MASK31;
ll x = ad * bu + au * bd;
ll xu = x >> 30, xd = x & MASK30;
x = au * bu * 2 + xu + (xd << 31) + ad * bd;
xu = x >> 61, xd = x & MASK61;
x = xu + xd;
if (x >= MASK61) x -= MASK61;
val = x;
return *this;
}
modint61 operator-() const { return modint61(get_mod() - val); }
modint61 &operator/=(const modint61 &p) {
*this *= p.inverse();
return *this;
}
modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
modint61 inverse() const {
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint61(u);
}
modint61 pow(int64_t n) const {
modint61 ret(1), mul(val);
while (n > 0) {
if (n & 1) ret = ret * mul;
mul = mul * mul;
n >>= 1;
}
return ret;
}
static constexpr ll get_mod() { return mod; }
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
#endif
};
struct RollingHash {
using mint = modint61;
static constexpr u64 mod = mint::get_mod();
const mint base;
vector<mint> power;
static inline mint generate_base() { return RNG(mod); }
inline void expand(size_t sz) {
if (power.size() < sz + 1) {
int pre_sz = (int)power.size();
power.resize(sz + 1);
for(int i=pre_sz - 1;i<sz;i++) power[i + 1] = power[i] * base;
}
}
explicit RollingHash(mint base = generate_base()) : base(base), power{1} {}
template <typename STRING>
vector<mint> build(const STRING& s) const {
int sz = s.size();
vector<mint> hashed(sz + 1);
for (int i = 0; i < sz; i++) { hashed[i + 1] = hashed[i] * base + s[i]; }
return hashed;
}
mint query(const vector<mint>& s, int l, int r) {
expand(r - l);
return (s[r] - s[l] * power[r - l]).val;
}
mint combine(mint h1, mint h2, int h2len) {
expand(h2len);
return h1 * power[h2len] + h2;
}
mint add_char(mint h, int x) { return h * base + mint(x); }
int lcp(const vector<mint>& a, int l1, int r1, const vector<mint>& b, int l2,
int r2) {
int len = min(r1 - l1, r2 - l2);
int low = 0, high = len + 1;
while (high - low > 1) {
int mid = (low + high) / 2;
if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
low = mid;
else
high = mid;
}
return low;
}
};
inline constexpr int msb(u64 x) {
int res = x ? 0 : -1;
if (x & 0xFFFFFFFF00000000) x &= 0xFFFFFFFF00000000, res += 32;
if (x & 0xFFFF0000FFFF0000) x &= 0xFFFF0000FFFF0000, res += 16;
if (x & 0xFF00FF00FF00FF00) x &= 0xFF00FF00FF00FF00, res += 8;
if (x & 0xF0F0F0F0F0F0F0F0) x &= 0xF0F0F0F0F0F0F0F0, res += 4;
if (x & 0xCCCCCCCCCCCCCCCC) x &= 0xCCCCCCCCCCCCCCCC, res += 2;
return res + ((x & 0xAAAAAAAAAAAAAAAA) ? 1 : 0);
}
inline constexpr int ceil_log2(u64 x) { return x ? msb(x - 1) + 1 : 0; }
template<class T> class infinity {
public:
static constexpr T value = std::numeric_limits<T>::max() / 2;
static constexpr T mvalue = std::numeric_limits<T>::min() / 2;
static constexpr T max = std::numeric_limits<T>::max();
static constexpr T min = std::numeric_limits<T>::min();
};
#if __cplusplus <= 201402L
template<class T> constexpr T infinity<T>::value;
template<class T> constexpr T infinity<T>::mvalue;
template<class T> constexpr T infinity<T>::max;
template<class T> constexpr T infinity<T>::min;
#endif
template<class T = ll, bool is_max = false> class LiChaoTree {
private:
struct Line {
T a, b;
int idx;
T get(T x) const { return a * x + b; }
Line() = default;
Line(T a, T b, int id) : a(a), b(b), idx(id) {}
};
int line_count = 0;
int ori, n;
std::vector<T> xs;
std::vector<Line> lns;
void add_line(int k, int a, int b, const Line& line) {
if (a + 1 == b) {
if (line.get(xs[a]) < lns[k].get(xs[a])) lns[k] = line;
return;
}
int m = (a + b) >> 1;
T x1 = lns[k].get(xs[a]), x2 = line.get(xs[a]);
T y1 = lns[k].get(xs[b - 1]), y2 = line.get(xs[b - 1]);
if (x1 <= x2 && y1 <= y2) return;
if (x2 <= x1 && y2 <= y1) {
lns[k] = line;
return;
}
if (lns[k].get(xs[m]) <= line.get(xs[m])) {
if (y1 < y2) add_line(k << 1, a, m, line);
else add_line(k << 1 | 1, m, b, line);
}
else {
if (y1 < y2) add_line(k << 1 | 1, m, b, lns[k]);
else add_line(k << 1, a, m, lns[k]);
lns[k] = line;
}
}
void add_segment(int k, int a, int b, int l, int r, const Line& line) {
if (l <= a && b <= r) {
add_line(k, a, b, line);
return;
}
if (r <= a || b <= l) return;
int m = (a + b) >> 1;
add_segment(k << 1, a, m, l, r, line);
add_segment(k << 1 | 1, m, b, l, r, line);
}
public:
LiChaoTree() : LiChaoTree({0}) {}
LiChaoTree(const std::vector<T>& xs_) { init(xs_); }
void init(const std::vector<T>& xs_) {
xs = xs_.empty() ? std::vector<T>{0} : xs_;
ori = xs.size();
n = 1 << ceil_log2(ori);
xs.reserve(n);
for(int i=xs_.size();i<n;i++) xs.push_back(xs_[i] + 1);
lns.assign(n << 1,
Line{0, is_max ? infinity<T>::min : infinity<T>::max, -1});
}
int add_segment(int l, int r, T x, T y) {
assert(0 <= l && l <= r && r <= ori);
add_segment(1, 0, n, l, r,
Line{is_max ? -x : x, is_max ? -y : y, line_count});
return line_count++;
}
int add_line(T x, T y) {
add_line(1, 0, n, Line{is_max ? -x : x, is_max ? -y : y, line_count});
return line_count++;
}
T get_min(int k) const {
int x = k + n;
T res = lns[x].get(xs[k]);
while (x >>= 1) {
const T y = lns[x].get(xs[k]);
if(is_max) chmin(res, -y );
else chmin(res, y);
}
return res;
}
struct line {
T a, b;
int idx;
};
line get_min_line(int k) const {
int x = k + n;
T mn = lns[x].get(xs[k]);
Line res = lns[x];
while (x >>= 1) {
const T y = lns[x].get(xs[k]);
if (chmin(mn, is_max ? -y : y)) res = lns[x];
}
return line{is_max ? -res.a : res.a, is_max ? -res.b : res.b, res.idx};
}
};
template<class T , bool is_max ,
class largeT>
class ConvexHullTrick {
private:
struct Line {
T a, b;
int idx;
bool is_query;
mutable ll nxt_a, nxt_b;
mutable bool has_nxt;
T get(T x) const { return a * x + b; }
T get_nxt(T x) const { return nxt_a * x + nxt_b; }
Line() = default;
Line(T a, T b, int id, bool i = false)
: a(a), b(b), idx(id), is_query(i), has_nxt(false) {}
friend bool operator<(const Line& lhs, const Line& rhs) {
assert(!lhs.is_query || !rhs.is_query);
if (lhs.is_query) {
if (!rhs.has_nxt) return true;
return rhs.get(lhs.a) < rhs.get_nxt(lhs.a);
}
if (rhs.is_query) {
if (!lhs.has_nxt) return false;
return lhs.get(rhs.a) > lhs.get_nxt(rhs.a);
}
return lhs.a == rhs.a ? lhs.b < rhs.b : lhs.a < rhs.a;
}
};
int line_count = 0;
std::set<Line> st;
bool is_necessary(const typename std::set<Line>::iterator& itr) {
if (itr != st.begin() && itr->a == prev(itr)->a)
return itr->b < prev(itr)->b;
if (itr != prev(st.end()) && itr->a == next(itr)->a)
return itr->b < next(itr)->b;
if (itr == st.begin() || itr == prev(st.end())) return true;
return static_cast<largeT>(itr->b - prev(itr)->b) *
static_cast<largeT>(next(itr)->a - itr->a) <
static_cast<largeT>(itr->b - next(itr)->b) *
static_cast<largeT>(prev(itr)->a - itr->a);
}
public:
ConvexHullTrick() = default;
int add_line(T a, T b) {
auto itr =
st.emplace(is_max ? -a : a, is_max ? -b : b, line_count).first;
if (!is_necessary(itr)) {
st.erase(itr);
return line_count++;
}
while (itr != st.begin() && !is_necessary(prev(itr)))
st.erase(prev(itr));
while (itr != prev(st.end()) && !is_necessary(next(itr)))
st.erase(next(itr));
if (itr != st.begin()) {
prev(itr)->has_nxt = true;
prev(itr)->nxt_a = itr->a;
prev(itr)->nxt_b = itr->b;
}
if (itr != prev(st.end())) {
itr->has_nxt = true;
itr->nxt_a = next(itr)->a;
itr->nxt_b = next(itr)->b;
}
else itr->has_nxt = false;
return line_count++;
}
struct line {
T a, b;
int idx;
};
line get_min_line(T x) const {
auto itr = st.lower_bound(Line{x, 0, -1, true});
Line res{*itr};
return line{is_max ? -res.a : res.a, is_max ? -res.b : res.b, res.idx};
}
T get_min(T x) const {
const auto& l = get_min_line(x);
return l.a * x + l.b;
}
bool empty() const { return st.empty(); }
};
using mint=MontgomeryModInt<998244353>;
int main(){
fastio::Scanner sc(stdin);
fastio::Printer pr(stdout);
#define in(...) sc.read(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)
#define out(...) pr.write(__VA_ARGS__)
#define outln(...) pr.writeln(__VA_ARGS__)
#define outspace(...) pr.write(__VA_ARGS__),pr.write(' ')
#define rall(v) (v).rbegin(), (v).rend()
#define fi first
#define se second
/*
x
max[i] x*(a+a+(x-1)d)/2
xx/2max[i]dx+2a-d→CHT
priqueprique
*/
INT(n,m);
assert(2<=n&&n<=300000&&1<=m&&m<=300000);
ConvexHullTrick<ll,true,ll> cht;
priority_queue<pair<ll,ll>> pq;
bool plus=false,non_plus=false;;
FOR(i,n){
LL(a,d);
assert(-10000000<=a&&-10000000<=d&&10000000>=a&&10000000>=d);
if(d>0){
cht.add_line(d,2*a-d);
plus=true;
}else{
pq.push(make_pair(a,d));
non_plus=true;
}
}
vector<ll> s(m+1),t(m+1);
for(int i=0;i<=m;i++){
s[i]=cht.get_min(i)*i/2;
}
ll sum=0;
for(int i=0;i<=m;i++){
if(pq.empty()) break;
t[i]=sum;
auto [v,d]=pq.top();
pq.pop();
sum+=v;
pq.push(make_pair(v+d,d));
}
ll ans=-INF;
if(!plus){
ans=t[m];
}
if(!non_plus){
ans=s[m];
}
if(plus&&non_plus){
for(int i=0;i<=m;i++){
ans=max(ans,s[i]+t[m-i]);
}
}
outln(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0