結果

問題 No.2425 Power Range GCD
ユーザー GandalfrGandalfr
提出日時 2023-08-18 21:23:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 14,608 bytes
コンパイル時間 2,483 ms
コンパイル使用メモリ 208,212 KB
最終ジャッジ日時 2025-02-16 09:33:32
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "playspace/main.cpp"
#include <bits/stdc++.h>
#line 8 "library/gandalfr/other/io_supporter.hpp"
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++)
os << v[i] << (i + 1 != (int)v.size() ? " " : "");
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::set<T> &st) {
for (const T &x : st) {
std::cout << x << " ";
}
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::multiset<T> &st) {
for (const T &x : st) {
std::cout << x << " ";
}
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::deque<T> &dq) {
for (const T &x : dq) {
std::cout << x << " ";
}
return os;
}
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &p) {
os << p.first << ' ' << p.second;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, std::queue<T> &q) {
int sz = q.size();
while (--sz) {
os << q.front() << ' ';
q.push(q.front());
q.pop();
}
os << q.front();
q.push(q.front());
q.pop();
return os;
}
template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for (T &in : v)
is >> in;
return is;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
#line 4 "library/gandalfr/math/prime_number_utility.hpp"
#line 6 "library/gandalfr/math/prime_number_utility.hpp"
#line 6 "library/gandalfr/math/enumeration_utility.hpp"
#line 5 "library/gandalfr/standard/mod_integer.hpp"
inline long long mod_inverse(long long a, int mod) {
assert(mod > 0);
long long b = mod, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, std::swap(a, b);
u -= t * v, std::swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
// mod_integer<P> a := P;
template <int mod> class mod_integer {
private:
long long val; // 0 <= val < mod
friend mod_integer operator+(const mod_integer &a) { return a; }
friend mod_integer operator-(const mod_integer &a) { return -a.val; }
friend mod_integer operator+(const mod_integer &a, const mod_integer &b) {
return mod_integer(a.val + b.val);
}
friend mod_integer operator-(const mod_integer &a, const mod_integer &b) {
return mod_integer(a.val - b.val);
}
friend mod_integer operator*(const mod_integer &a, const mod_integer &b) {
return mod_integer(a.val * b.val);
}
friend mod_integer operator/(const mod_integer &a, const mod_integer &b) {
return mod_integer((a.val * mod_inverse(b.val, mod)) % mod);
}
friend bool operator==(const mod_integer &a, const mod_integer &b) {
return a.val == b.val;
}
friend bool operator!=(const mod_integer &a, const mod_integer &b) {
return a.val != b.val;
}
// map 便
friend bool operator<(const mod_integer &a, const mod_integer &b) {
return a.val < b.val;
}
public:
mod_integer(long long n) : val(n) {
val %= mod;
if (val < 0)
val += mod;
}
mod_integer() : val(0) {}
int value() const { return (int)val; }
mod_integer &operator=(const mod_integer &a) = default;
mod_integer &operator+=(const mod_integer &a) {
val += a.val;
if (val >= mod)
val -= mod;
return *this;
}
mod_integer &operator-=(const mod_integer &a) {
val -= a.val;
if (val < 0)
val += mod;
return *this;
}
mod_integer &operator*=(const mod_integer &a) {
(val *= a.val) %= mod;
return *this;
}
mod_integer &operator/=(const mod_integer &a) {
(val *= mod_inverse(a.val, mod)) %= mod;
return *this;
}
friend std::istream &operator>>(std::istream &is, mod_integer &a) {
is >> a.val;
a.val %= mod;
if (a.val < 0)
a.val += mod;
return is;
}
friend std::ostream &operator<<(std::ostream &os, const mod_integer &a) {
os << a.val;
return os;
}
};
// d_mod_integer<P> a := P;
template <int id> class dynamic_mod_integer {
private:
using d_mod_integer = dynamic_mod_integer<id>;
static inline int mod = 998244353;
long long val; // 0 <= val < mod
friend d_mod_integer operator+(const d_mod_integer &a) { return a; }
friend d_mod_integer operator-(const d_mod_integer &a) { return -a.val; }
friend d_mod_integer operator+(const d_mod_integer &a,
const d_mod_integer &b) {
return d_mod_integer(a.val + b.val);
}
friend d_mod_integer operator-(const d_mod_integer &a,
const d_mod_integer &b) {
return d_mod_integer(a.val - b.val);
}
friend d_mod_integer operator*(const d_mod_integer &a,
const d_mod_integer &b) {
return d_mod_integer(a.val * b.val);
}
friend d_mod_integer operator/(const d_mod_integer &a,
const d_mod_integer &b) {
return d_mod_integer((a.val * mod_inverse(b.val, mod)) % mod);
}
friend bool operator==(const d_mod_integer &a, const d_mod_integer &b) {
return a.val == b.val;
}
friend bool operator!=(const d_mod_integer &a, const d_mod_integer &b) {
return a.val != b.val;
}
// map 便
friend bool operator<(const d_mod_integer &a, const d_mod_integer &b) {
return a.val < b.val;
}
public:
dynamic_mod_integer(long long n) : val(n) {
val %= mod;
if (val < 0)
val += mod;
}
dynamic_mod_integer() : val(0) {}
int value() const { return (int)val; }
static void set_mod(int _mod) {
assert(_mod >= 0);
mod = _mod;
}
d_mod_integer &operator=(const d_mod_integer &a) = default;
d_mod_integer &operator+=(const d_mod_integer &a) {
val += a.val;
if (val >= mod)
val -= mod;
return *this;
}
d_mod_integer &operator-=(const d_mod_integer &a) {
val -= a.val;
if (val < 0)
val += mod;
return *this;
}
d_mod_integer &operator*=(const d_mod_integer &a) {
(val *= a.val) %= mod;
return *this;
}
d_mod_integer &operator/=(const d_mod_integer &a) {
(val *= mod_inverse(a.val, mod)) %= mod;
return *this;
}
friend std::istream &operator>>(std::istream &is, d_mod_integer &a) {
is >> a.val;
a.val %= mod;
if (a.val < 0)
a.val += mod;
return is;
}
friend std::ostream &operator<<(std::ostream &os, const d_mod_integer &a) {
os << a.val;
return os;
}
};
using mint = mod_integer<1000000007>;
using _mint = mod_integer<998244353>;
using dmint = dynamic_mod_integer<-1>;
#line 8 "library/gandalfr/math/enumeration_utility.hpp"
template <class T> T power(T x, long long n) {
T ret = static_cast<T>(1);
while (n > 0) {
if (n & 1)
ret = ret * x;
x = x * x;
n >>= 1;
}
return ret;
}
long long power(long long x, long long n) {
long long ret = 1;
while (n > 0) {
if (n & 1)
ret = ret * x;
x = x * x;
n >>= 1;
}
return ret;
}
long long power(long long x, long long n, int MOD) {
long long ret = 1;
x %= MOD;
while (n > 0) {
if (n & 1)
ret = ret * x % MOD;
x = x * x % MOD;
n >>= 1;
}
return ret;
}
long long power(long long x, long long n, long long MOD) {
long long ret = 1;
x %= MOD;
while (n > 0) {
if (n & 1)
ret = (__int128_t)ret * x % MOD;
x = (__int128_t)x * x % MOD;
n >>= 1;
}
return ret;
}
template <class T> class factorial {
private:
static inline std::vector<T> fact{T(1)};
public:
factorial() = delete;
~factorial() = delete;
static T get(int n) {
while (n >= fact.size())
fact.push_back(fact.back() * fact.size());
return fact[n];
}
};
mint (*fact)(int) = factorial<mint>::get;
_mint (*_fact)(int) = factorial<_mint>::get;
template <class T> T permutation(int n, int k) {
assert(0 <= k && k <= n);
return factorial<T>::get(n) / factorial<T>::get(n - k);
}
mint (*perm)(int, int) = permutation<mint>;
_mint (*_perm)(int, int) = permutation<_mint>;
template <class T> static T combnation(int n, int k) {
assert(0 <= k && k <= n);
return factorial<T>::get(n) /
(factorial<T>::get(k) * factorial<T>::get(n - k));
}
mint (*comb)(int, int) = combnation<mint>;
_mint (*_comb)(int, int) = combnation<_mint>;
#line 8 "library/gandalfr/math/prime_number_utility.hpp"
/**
* @see https://drken1215.hatenablog.com/entry/2023/05/23/233000
*/
bool MillerRabin(long long N, const std::vector<long long> &A) {
long long s = 0, d = N - 1;
while (d % 2 == 0) {
++s;
d >>= 1;
}
for (auto a : A) {
if (N <= a)
return true;
long long t, x = power(a, d, N);
if (x != 1) {
for (t = 0; t < s; ++t) {
if (x == N - 1)
break;
x = (__int128_t)x * x % N;
}
if (t == s)
return false;
}
}
return true;
}
/**
* @brief
* @brief
*/
class Eratosthenes {
protected:
static inline int seive_size = (1 << 24);
static inline std::vector<bool> sieve;
static inline std::vector<int> primes{2, 3}, movius, min_factor;
static void make_table() {
sieve.assign(seive_size, true);
sieve[0] = sieve[1] = false;
movius.assign(seive_size, 1);
min_factor.assign(seive_size, 1);
for (int i = 2; i <= seive_size; ++i) {
if (!sieve[i])
continue;
movius[i] = -1;
min_factor[i] = i;
primes.push_back(i);
for (int j = i * 2; j < seive_size; j += i) {
sieve[j] = false;
movius[j] = ((j / i) % i == 0 ? 0 : -movius[j]);
if (min_factor[j] == 1)
min_factor[j] = i;
}
}
}
static std::vector<std::pair<long long, int>> fast_factorize(long long n) {
std::vector<std::pair<long long, int>> ret;
while (n > 1) {
if (ret.empty() || ret.back().first != min_factor[n]) {
ret.push_back({min_factor[n], 1});
} else {
ret.back().second++;
}
n /= min_factor[n];
}
return ret;
}
static std::vector<std::pair<long long, int>> naive_factorize(long long n) {
std::vector<std::pair<long long, int>> ret;
for (long long p : primes) {
if (n == 1 || p * p > n)
break;
while (n % p == 0) {
if (ret.empty() || ret.back().first != p)
ret.push_back({p, 1});
else
ret.back().second++;
n /= p;
}
}
if (n != 1)
ret.push_back({n, 1});
return ret;
}
public:
Eratosthenes() = delete;
~Eratosthenes() = delete;
static void set_init_size(int size) {
assert(sieve.empty());
seive_size = size;
}
/**
* @brief n
* @attention if n < (1 << 24) : O(1)
* @attention else : O(log(N))
*/
static bool is_prime(long long n) {
if (sieve.empty())
make_table();
assert(1 <= n);
if (n > 2 && (n & 1LL) == 0) {
return false;
} else if (n < seive_size) {
return sieve[n];
} else if (n < 4759123141LL) {
return MillerRabin(n, {2, 7, 61});
} else {
return MillerRabin(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
}
/**
* @brief
* @return factorize(p1^e1 * p2^e2 * ...) => {{p1, e1}, {p2, e2], ...},
* @return factorize(1) => {}
* @attention if n < (1 << 24) : O(log(N))
* @attention if n < (1 << 24) : O(N^(3/2))
*/
static std::vector<std::pair<long long, int>> factorize(long long n) {
if (sieve.empty())
make_table();
assert(1 <= n);
if (n < seive_size) {
return fast_factorize(n);
} else {
return naive_factorize(n);
}
}
static int Movius(int n) {
if (movius.empty())
make_table();
assert(1 <= n);
return movius.at(n);
}
/**
* @brief
*/
long long totient(long long n) {
long long ret = 1;
for (auto [b, e] : factorize(n))
ret *= power(b, e - 1) * (b - 1);
return ret;
}
static int kth_prime(int k) { return primes.at(k); }
};
#line 4 "playspace/main.cpp"
using namespace std;
using ll = long long;
const int INF = 1001001001;
const int MAXINT = std::numeric_limits<int>::max();
const int MININT = std::numeric_limits<int>::min();
const ll INFLL = 1001001001001001001;
const ll MAXLL = std::numeric_limits<ll>::max();
const ll MINLL = std::numeric_limits<ll>::min();
const ll MOD = 1000000007;
const ll _MOD = 998244353;
#define rep(i, j, n) for(ll i = (ll)(j); i < (ll)(n); i++)
#define rrep(i, j, n) for(ll i = (ll)(n-1); i >= (ll)(j); i--)
#define all(a) (a).begin(),(a).end()
#define LF cout << endl
#ifdef ENABLE_MULTI_FOR
#define mrep(it, mr) for(multi_iter it(mr); !it.fin(); ++it)
#endif
template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
void Yes(bool ok){ std::cout << (ok ? "Yes" : "No") << std::endl; }
int main(void){
cout << 1 << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0