結果
問題 | No.2436 Min Diff Distance |
ユーザー | hitonanode |
提出日時 | 2023-08-18 21:41:00 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 442 ms / 2,000 ms |
コード長 | 10,158 bytes |
コンパイル時間 | 5,580 ms |
コンパイル使用メモリ | 208,920 KB |
実行使用メモリ | 24,184 KB |
最終ジャッジ日時 | 2024-11-28 06:13:47 |
合計ジャッジ時間 | 8,835 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 416 ms
21,092 KB |
testcase_04 | AC | 417 ms
20,992 KB |
testcase_05 | AC | 430 ms
21,088 KB |
testcase_06 | AC | 442 ms
21,220 KB |
testcase_07 | AC | 439 ms
21,088 KB |
testcase_08 | AC | 409 ms
21,092 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 1 ms
5,248 KB |
testcase_11 | AC | 261 ms
24,064 KB |
testcase_12 | AC | 266 ms
24,184 KB |
testcase_13 | AC | 277 ms
19,360 KB |
testcase_14 | AC | 44 ms
5,512 KB |
testcase_15 | AC | 397 ms
20,924 KB |
testcase_16 | AC | 181 ms
12,220 KB |
testcase_17 | AC | 348 ms
20,408 KB |
testcase_18 | AC | 323 ms
19,860 KB |
testcase_19 | AC | 362 ms
20,384 KB |
testcase_20 | AC | 242 ms
12,848 KB |
testcase_21 | AC | 106 ms
7,932 KB |
testcase_22 | AC | 44 ms
5,528 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <algorithm> #include <numeric> #include <utility> #include <vector> // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector<int> par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } std::vector<std::vector<int>> groups() { std::vector<std::vector<int>> ret(par.size()); for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i); ret.erase(std::remove_if(ret.begin(), ret.end(), [&](const std::vector<int> &v) { return v.empty(); }), ret.end()); return ret; } }; #include <algorithm> #include <map> #include <numeric> #include <tuple> #include <vector> // Manhattan MST: 二次元平面上の頂点たちのマンハッタン距離による minimum spanning tree の O(N) 本の候補辺を列挙 // Complexity: O(N log N) // output: [(weight_uv, u, v), ...] // Verified: https://judge.yosupo.jp/problem/manhattanmst, https://www.codechef.com/problems/HKRMAN // Reference: // [1] H. Zhou, N. Shenoy, W. Nicholls, // "Efficient minimum spanning tree construction without Delaunay triangulation," // Information Processing Letters, 81(5), 271-276, 2002. template <typename T> std::vector<std::tuple<T, int, int>> manhattan_mst(std::vector<T> xs, std::vector<T> ys) { const int n = xs.size(); std::vector<int> idx(n); std::iota(idx.begin(), idx.end(), 0); std::vector<std::tuple<T, int, int>> ret; for (int s = 0; s < 2; s++) { for (int t = 0; t < 2; t++) { auto cmp = [&](int i, int j) { return xs[i] + ys[i] < xs[j] + ys[j]; }; std::sort(idx.begin(), idx.end(), cmp); std::map<T, int> sweep; for (int i : idx) { for (auto it = sweep.lower_bound(-ys[i]); it != sweep.end(); it = sweep.erase(it)) { int j = it->second; if (xs[i] - xs[j] < ys[i] - ys[j]) break; ret.emplace_back(std::abs(xs[i] - xs[j]) + std::abs(ys[i] - ys[j]), i, j); } sweep[-ys[i]] = i; } std::swap(xs, ys); } for (auto &x : xs) x = -x; } std::sort(ret.begin(), ret.end()); return ret; } int main() { int N; cin >> N; vector<int> xs(N), ys(N); REP(i, N) cin >> xs.at(i) >> ys.at(i); constexpr int inf = 1e7; int maxu = -inf, minu = inf, maxv = -inf, minv = inf; REP(i, N) { int x = xs.at(i), y = ys.at(i); int u = x + y, v = x - y; chmax(maxu, u); chmin(minu, u); chmax(maxv, v); chmin(minv, v); } vector<int> lo(N, 1 << 30), hi(N); REP(i, N) { const int x = xs.at(i), y = ys.at(i); const int u = x + y, v = x - y; chmax(hi.at(i), max({abs(maxu - u), abs(minu - u), abs(maxv - v), abs(minv - v)})); } for (auto [w, i, j] : manhattan_mst<int>(xs, ys)) { chmin(lo.at(i), w); chmin(lo.at(j), w); } dbg(hi); dbg(lo); int ret = inf; REP(i, N) chmin(ret, hi.at(i) - lo.at(i)); cout << ret << '\n'; }