結果
| 問題 |
No.2435 Order All Company
|
| コンテスト | |
| ユーザー |
Forested
|
| 提出日時 | 2023-08-18 21:43:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 22 ms / 2,000 ms |
| コード長 | 13,039 bytes |
| コンパイル時間 | 1,678 ms |
| コンパイル使用メモリ | 141,496 KB |
| 最終ジャッジ日時 | 2025-02-16 09:49:06 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 36 |
ソースコード
#ifndef LOCAL
#define FAST_IO
#endif
// ============
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)
#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER(i, n) for (i32 i = (i32)(n) - 1; i >= 0; --i)
#define ALL(x) begin(x), end(x)
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using i32 = signed int;
using i64 = signed long long;
using f64 = double;
using f80 = long double;
template <typename T>
using Vec = vector<T>;
template <typename T>
bool chmin(T &x, const T &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
#ifdef INT128
using u128 = __uint128_t;
using i128 = __int128_t;
istream &operator>>(istream &is, i128 &x) {
i64 v;
is >> v;
x = v;
return is;
}
ostream &operator<<(ostream &os, i128 x) {
os << (i64)x;
return os;
}
istream &operator>>(istream &is, u128 &x) {
u64 v;
is >> v;
x = v;
return is;
}
ostream &operator<<(ostream &os, u128 x) {
os << (u64)x;
return os;
}
#endif
[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
SetUpIO() {
#ifdef FAST_IO
ios::sync_with_stdio(false);
cin.tie(nullptr);
#endif
cout << fixed << setprecision(15);
}
} set_up_io;
// ============
#ifdef DEBUGF
#else
#define DBG(x) (void)0
#endif
// ============
#include <cassert>
#include <iostream>
#include <type_traits>
// ============
constexpr bool is_prime(unsigned n) {
if (n == 0 || n == 1) {
return false;
}
for (unsigned i = 2; i * i <= n; ++i) {
if (n % i == 0) {
return false;
}
}
return true;
}
constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {
unsigned ret = 1, self = x;
while (y != 0) {
if (y & 1) {
ret = (unsigned) ((unsigned long long) ret * self % mod);
}
self = (unsigned) ((unsigned long long) self * self % mod);
y /= 2;
}
return ret;
}
template <unsigned mod>
constexpr unsigned primitive_root() {
static_assert(is_prime(mod), "`mod` must be a prime number.");
if (mod == 2) {
return 1;
}
unsigned primes[32] = {};
int it = 0;
{
unsigned m = mod - 1;
for (unsigned i = 2; i * i <= m; ++i) {
if (m % i == 0) {
primes[it++] = i;
while (m % i == 0) {
m /= i;
}
}
}
if (m != 1) {
primes[it++] = m;
}
}
for (unsigned i = 2; i < mod; ++i) {
bool ok = true;
for (int j = 0; j < it; ++j) {
if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {
ok = false;
break;
}
}
if (ok)
return i;
}
return 0;
}
// y >= 1
template <typename T>
constexpr T safe_mod(T x, T y) {
x %= y;
if (x < 0) {
x += y;
}
return x;
}
// y != 0
template <typename T>
constexpr T floor_div(T x, T y) {
if (y < 0) {
x *= -1;
y *= -1;
}
if (x >= 0) {
return x / y;
} else {
return -((-x + y - 1) / y);
}
}
// y != 0
template <typename T>
constexpr T ceil_div(T x, T y) {
if (y < 0) {
x *= -1;
y *= -1;
}
if (x >= 0) {
return (x + y - 1) / y;
} else {
return -(-x / y);
}
}
// ============
template <unsigned mod>
class ModInt {
static_assert(mod != 0, "`mod` must not be equal to 0.");
static_assert(
mod < (1u << 31),
"`mod` must be less than (1u << 31) = 2147483648.");
unsigned val;
public:
static constexpr unsigned get_mod() {
return mod;
}
constexpr ModInt() : val(0) {}
template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>
constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {}
template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>
constexpr ModInt(T x) : val((unsigned) (x % mod)) {}
static constexpr ModInt raw(unsigned x) {
ModInt<mod> ret;
ret.val = x;
return ret;
}
constexpr unsigned get_val() const {
return val;
}
constexpr ModInt operator+() const {
return *this;
}
constexpr ModInt operator-() const {
return ModInt<mod>(0u) - *this;
}
constexpr ModInt &operator+=(const ModInt &rhs) {
val += rhs.val;
if (val >= mod)
val -= mod;
return *this;
}
constexpr ModInt &operator-=(const ModInt &rhs) {
val -= rhs.val;
if (val >= mod)
val += mod;
return *this;
}
constexpr ModInt &operator*=(const ModInt &rhs) {
val = (unsigned long long)val * rhs.val % mod;
return *this;
}
constexpr ModInt &operator/=(const ModInt &rhs) {
val = (unsigned long long)val * rhs.inv().val % mod;
return *this;
}
friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) += rhs;
}
friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) -= rhs;
}
friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) *= rhs;
}
friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) /= rhs;
}
constexpr ModInt pow(unsigned long long x) const {
ModInt<mod> ret = ModInt<mod>::raw(1);
ModInt<mod> self = *this;
while (x != 0) {
if (x & 1)
ret *= self;
self *= self;
x >>= 1;
}
return ret;
}
constexpr ModInt inv() const {
static_assert(is_prime(mod), "`mod` must be a prime number.");
assert(val != 0);
return this->pow(mod - 2);
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {
long long val;
is >> val;
x.val = val % mod + (val < 0 ? mod : 0);
return is;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {
os << x.val;
return os;
}
friend bool operator==(const ModInt &lhs, const ModInt &rhs) {
return lhs.val == rhs.val;
}
friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {
return lhs.val != rhs.val;
}
};
[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;
[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;
// ============
// ============
#include <cassert>
#include <utility>
#include <vector>
template <typename T>
class Matrix {
std::vector<std::vector<T>> data;
public:
Matrix(int n) : data(n, std::vector<T>(n, T(0))) {}
Matrix(int h, int w) : data(h, std::vector<T>(w, T(0))) {}
// must be rectangular
Matrix(std::vector<std::vector<T>> a) : data(std::move(a)) {}
int height() const {
return data.size();
}
int width() const {
return data.empty() ? 0 : data[0].size();
}
bool is_square() const {
return height() == width();
}
const T &operator()(int i, int j) const {
return data[i][j];
}
T &operator()(int i, int j) {
return data[i][j];
}
Matrix<T> trans() const {
const int h = height(), w = width();
Matrix<T> ret(w, h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret.data[j][i] = data[i][j];
}
}
return ret;
}
Matrix<T> operator+() const {
return *this;
}
Matrix<T> operator-() const {
const int h = height(), w = width();
Matrix<T> ret = *this;
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret.data[i][j] = -ret.data[i][j];
}
}
return ret;
}
Matrix<T> &operator+=(const Matrix<T> &rhs) {
assert(height() == rhs.height() && width() == rhs.width());
const int h = height(), w = width();
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
data[i][j] += rhs.data[i][j];
}
}
return *this;
}
Matrix<T> &operator-=(const Matrix<T> &rhs) {
assert(height() == rhs.height() && width() == rhs.width());
const int h = height(), w = width();
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
data[i][j] -= rhs.data[i][j];
}
}
return *this;
}
friend Matrix<T> operator+(const Matrix<T> &lhs, const Matrix<T> &rhs) {
return lhs += rhs;
}
friend Matrix<T> operator-(const Matrix<T> &lhs, const Matrix<T> &rhs) {
return lhs -= rhs;
}
friend Matrix<T> operator*(const Matrix<T> &lhs, const Matrix<T> &rhs) {
assert(lhs.width() == rhs.height());
const int n = lhs.height(), m = rhs.height(), k = rhs.width();
Matrix<T> ret(n, k);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < k; ++j) {
for (int l = 0; l < m; ++l) {
ret.data[i][j] += lhs.data[i][l] * rhs.data[l][j];
}
}
}
return ret;
}
Matrix<T> &operator*=(const Matrix<T> &rhs) {
return *this = *this * rhs;
}
static Matrix<T> e(int n) {
Matrix<T> mat(n);
for (int i = 0; i < n; ++i) {
mat.data[i][i] = T(1);
}
return mat;
}
Matrix<T> pow(unsigned long long t) {
assert(height() == width());
Matrix<T> ret = Matrix::e(height());
Matrix<T> self = *this;
while (t > 0) {
if (t % 2 == 1) {
ret = ret * self;
}
self = self * self;
t /= 2;
}
return ret;
}
T det() const {
assert(is_square());
const int n = height();
std::vector<std::vector<T>> a = data;
T ans(1);
for (int i = 0; i < n; ++i) {
int nonzero = -1;
for (int j = i; j < n; ++j) {
if (a[j][i] != T(0)) {
nonzero = j;
break;
}
}
if (nonzero == -1) {
return T(0);
}
if (nonzero != i) {
std::swap(a[i], a[nonzero]);
ans = -ans;
}
ans *= a[i][i];
{
const T inv = T(1) / T(a[i][i]);
for (int j = i; j < n; ++j) {
a[i][j] *= inv;
}
}
for (int j = i + 1; j < n; ++j) {
const T tmp = a[j][i];
for (int k = i; k < n; ++k) {
a[j][k] -= tmp * a[i][k];
}
}
}
return ans;
}
};
// ============
using Mint = ModInt<mod998244353>;
Mint spanning(i32 n, const Vec<Vec<i32>> &edge) {
Vec<i32> deg(n, 0);
REP(i, n) REP(j, i) {
deg[i] += edge[i][j];
deg[j] += edge[i][j];
}
Matrix<Mint> mat(n - 1, n - 1);
REP(i, n - 1) REP(j, n - 1) {
if (i == j) {
mat(i, j) = Mint(deg[i]);
} else {
mat(i, j) = -Mint(edge[i][j]);
}
}
return mat.det();
}
int main() {
i32 n, k;
cin >> n >> k;
Vec<Vec<pair<i32, i32>>> edges(k);
REP(i, k) {
i32 t;
cin >> t;
edges[i].reserve(t);
while (t--) {
i32 a, b;
cin >> a >> b;
--a;
--b;
edges[i].emplace_back(a, b);
}
}
Mint ans;
REP(st, 1, 1 << k) {
Vec<Vec<i32>> edge(n, Vec<i32>(n, 0));
REP(i, k) {
if (st & (1 << i)) {
for (auto [a, b] : edges[i]) {
++edge[a][b];
++edge[b][a];
}
}
}
Mint cnt = spanning(n, edge);
if (__builtin_parity(((1 << k) - 1) ^ st)) {
ans -= cnt;
} else {
ans += cnt;
}
}
cout << ans << '\n';
}
Forested