結果
| 問題 |
No.2434 RAKUTAN de RAKUTAN
|
| コンテスト | |
| ユーザー |
yupiteru_kun
|
| 提出日時 | 2023-08-18 21:44:28 |
| 言語 | C# (.NET 8.0.404) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 33,171 bytes |
| コンパイル時間 | 17,597 ms |
| コンパイル使用メモリ | 167,056 KB |
| 実行使用メモリ | 201,044 KB |
| 最終ジャッジ日時 | 2024-11-28 06:23:08 |
| 合計ジャッジ時間 | 28,236 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 11 WA * 13 |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (99 ms)。 MSBuild のバージョン 17.9.6+a4ecab324 (.NET) main -> /home/judge/data/code/bin/Release/net8.0/main.dll main -> /home/judge/data/code/bin/Release/net8.0/publish/
ソースコード
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using static System.Math;
using System.Text;
using System.Threading;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using Library;
namespace Program
{
public static class ProblemA
{
static bool SAIKI = false;
static public int numberOfRandomCases = 0;
static public void MakeTestCase(List<string> _input, List<string> _output, ref Func<string[], bool> _outputChecker)
{
}
static public void Solve()
{
var N = NN;
var H = NN;
var X = NN;
var G = NN;
var gList = NNList(G).ToHashSet();
var B = NN;
var bList = NNList(B).ToHashSet();
Func<long, (long score, long useX)> fun = pena =>
{
var kouho = new HashSet<long>();
kouho.Add(N);
foreach (var item in gList.Concat(bList))
{
kouho.Add(item - 1);
kouho.Add(item);
kouho.Add(Min(item + 1, N));
}
var list = kouho.OrderBy(e => e).ToArray();
var set = new LIB_RedBlackTree<long, (long score, long useX)>();
set.Add(0, (0, 0));
foreach (var item in list)
{
var selected = set[set.Count - 1].Value;
var idx = set.UpperBound(item - X) - 1;
if (idx >= 0)
{
var use = set[idx].Value;
++use.useX;
use.score -= pena;
if (selected.score < use.score) selected = use;
}
if (gList.Contains(item)) selected.score += 1;
if (bList.Contains(item)) selected.score -= 1;
set.Add(item, selected);
}
return set.Max().Value;
};
var left = -1L;
var right = 1000000L;
while (right - left > 1)
{
var mid = (right + left) / 2;
if (fun(mid).useX <= H) right = mid;
else left = mid;
}
var ans = fun(right);
Console.WriteLine(ans.score + H * right);
}
class Printer : StreamWriter
{
public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } }
public Printer(Stream stream) : base(stream, new UTF8Encoding(false, true)) { base.AutoFlush = false; }
public Printer(Stream stream, Encoding encoding) : base(stream, encoding) { base.AutoFlush = false; }
}
static LIB_FastIO fastio = new LIB_FastIODebug();
static string[] args;
static public void Main(string[] args_t) { args = args_t; if (args_t.Length == 0) { fastio = new LIB_FastIO(); Console.SetOut(new Printer(Console.OpenStandardOutput())); } if (SAIKI) { var t = new Thread(Solve, 134217728); t.Start(); t.Join(); } else Solve(); Console.Out.Flush(); }
static long NN => fastio.Long();
static double ND => fastio.Double();
static string NS => fastio.Scan();
static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray();
static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray();
static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray();
static long Count<T>(this IEnumerable<T> x, Func<T, bool> pred) => Enumerable.Count(x, pred);
static IEnumerable<T> Repeat<T>(T v, long n) => Enumerable.Repeat<T>(v, (int)n);
static IEnumerable<int> Range(long s, long c) => Enumerable.Range((int)s, (int)c);
static IOrderedEnumerable<T> OrderByRand<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x, _ => xorshift);
static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x.OrderByRand(), e => e);
static IOrderedEnumerable<T1> OrderBy<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderBy(x.OrderByRand(), selector);
static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x) => Enumerable.OrderByDescending(x.OrderByRand(), e => e);
static IOrderedEnumerable<T1> OrderByDescending<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderByDescending(x.OrderByRand(), selector);
static IOrderedEnumerable<string> OrderBy(this IEnumerable<string> x) => x.OrderByRand().OrderBy(e => e, StringComparer.OrdinalIgnoreCase);
static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderBy(selector, StringComparer.OrdinalIgnoreCase);
static IOrderedEnumerable<string> OrderByDescending(this IEnumerable<string> x) => x.OrderByRand().OrderByDescending(e => e, StringComparer.OrdinalIgnoreCase);
static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderByDescending(selector, StringComparer.OrdinalIgnoreCase);
static string Join<T>(this IEnumerable<T> x, string separator = "") => string.Join(separator, x);
static uint xorshift { get { _xsi.MoveNext(); return _xsi.Current; } }
static IEnumerator<uint> _xsi = _xsc();
static IEnumerator<uint> _xsc() { uint x = 123456789, y = 362436069, z = 521288629, w = (uint)(DateTime.Now.Ticks & 0xffffffff); while (true) { var t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); yield return w; } }
static bool Chmax<T>(this ref T lhs, T rhs) where T : struct, IComparable<T> { if (lhs.CompareTo(rhs) < 0) { lhs = rhs; return true; } return false; }
static bool Chmin<T>(this ref T lhs, T rhs) where T : struct, IComparable<T> { if (lhs.CompareTo(rhs) > 0) { lhs = rhs; return true; } return false; }
static void Fill<T>(this T[] array, T value) => array.AsSpan().Fill(value);
static void Fill<T>(this T[,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(value);
static void Fill<T>(this T[,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(value);
static void Fill<T>(this T[,,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(value);
}
}
namespace Library {
class LIB_RedBlackTree
{
static public LIB_RedBlackTree<long, long, long> CreateRangeUpdateRangeMin() => new LIB_RedBlackTree<long, long, long>(long.MaxValue, long.MinValue + 100, Math.Min, (x, y, c) => y, (x, y) => y);
static public LIB_RedBlackTree<long, long, long> CreateRangeAddRangeMin() => new LIB_RedBlackTree<long, long, long>(long.MaxValue, 0, Math.Min, (x, y, c) => x + y, (x, y) => x + y);
static public LIB_RedBlackTree<long, long, long> CreateRangeUpdateRangeMax() => new LIB_RedBlackTree<long, long, long>(long.MinValue, long.MaxValue - 100, Math.Max, (x, y, c) => y, (x, y) => y);
static public LIB_RedBlackTree<long, long, long> CreateRangeAddRangeMax() => new LIB_RedBlackTree<long, long, long>(long.MinValue, 0, Math.Max, (x, y, c) => x + y, (x, y) => x + y);
static public LIB_RedBlackTree<long, long, long> CreateRangeUpdateRangeSum() => new LIB_RedBlackTree<long, long, long>(0, long.MaxValue, (x, y) => x + y, (x, y, c) => y * c, (x, y) => y);
static public LIB_RedBlackTree<long, long, long> CreateRangeAddRangeSum() => new LIB_RedBlackTree<long, long, long>(0, 0, (x, y) => x + y, (x, y, c) => x + y * c, (x, y) => x + y);
}
class LIB_RedBlackTree<Key, ValueT, ValueE> where ValueE : IEquatable<ValueE>
{
bool ope;
class Node
{
public Node left;
public Node right;
public Key key;
public ValueT val;
public ValueT dat;
public ValueE lazy;
public bool isBlack;
public int cnt;
public bool needRecalc;
}
Func<ValueT, ValueT, ValueT> f;
Func<ValueT, ValueE, int, ValueT> g;
Func<ValueE, ValueE, ValueE> h;
ValueT ti;
ValueE ei;
Comparison<Key> c;
Node root;
bool isNeedFix;
Node lmax;
List<Node> pool = new List<Node>();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(ValueT ti, ValueE ei, Func<ValueT, ValueT, ValueT> f, Func<ValueT, ValueE, int, ValueT> g, Func<ValueE, ValueE, ValueE> h, Comparison<Key> c, bool ope = true)
{
this.ti = ti;
this.ei = ei;
this.f = f;
this.g = g;
this.h = h;
this.c = c;
this.ope = ope;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(ValueT ti, ValueE ei, Func<ValueT, ValueT, ValueT> f, Func<ValueT, ValueE, int, ValueT> g, Func<ValueE, ValueE, ValueE> h) : this(ti, ei, f, g, h, Comparer<Key>.Default.Compare) { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
bool IsRed(Node n) => n != null && !n.isBlack;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
bool IsBlack(Node n) => n != null && n.isBlack;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
int Cnt(Node n) => n == null ? 0 : n.cnt;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
void Eval(Node n)
{
if (n == null || ei.Equals(n.lazy)) return;
n.val = g(n.val, n.lazy, 1);
if (!n.needRecalc) n.dat = g(n.dat, n.lazy, Cnt(n));
if (n.left != null) n.left.lazy = h(n.left.lazy, n.lazy);
if (n.right != null) n.right.lazy = h(n.right.lazy, n.lazy);
n.lazy = ei;
}
void Recalc(Node n)
{
Eval(n);
if (!n.needRecalc) return;
n.needRecalc = false;
n.dat = n.val;
if (n.left != null)
{
Recalc(n.left);
n.dat = f(n.left.dat, n.dat);
}
if (n.right != null)
{
Recalc(n.right);
n.dat = f(n.dat, n.right.dat);
}
}
Node RotateL(Node n)
{
if (ope && n != null) { Eval(n); Eval(n.right); }
Node m = n.right, t = m.left;
m.left = n; n.right = t;
n.cnt -= m.cnt - Cnt(t);
m.cnt += n.cnt - Cnt(t);
n.needRecalc = true; m.needRecalc = true;
return m;
}
Node RotateR(Node n)
{
if (ope && n != null) { Eval(n); Eval(n.left); }
Node m = n.left, t = m.right;
m.right = n; n.left = t;
n.cnt -= m.cnt - Cnt(t);
m.cnt += n.cnt - Cnt(t);
n.needRecalc = true; m.needRecalc = true;
return m;
}
Node RotateLR(Node n)
{
n.left = RotateL(n.left);
return RotateR(n);
}
Node RotateRL(Node n)
{
n.right = RotateR(n.right);
return RotateL(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(Key key, ValueT val)
{
root = Add(root, key, val);
root.isBlack = true;
}
Node Add(Node n, Key key, ValueT val)
{
if (n == null)
{
isNeedFix = true;
Node ret;
if (pool.Count > 0)
{
ret = pool[pool.Count - 1];
pool.RemoveAt(pool.Count - 1);
ret.left = ret.right = null;
ret.key = key;
ret.val = val;
ret.dat = val;
ret.lazy = ei;
ret.isBlack = false;
ret.cnt = 1;
ret.needRecalc = false;
}
else
{
ret = new Node() { key = key, val = val, dat = val, lazy = ei, cnt = 1 };
}
return ret;
}
if (ope) Eval(n);
if (c(key, n.key) < 0) n.left = Add(n.left, key, val);
else n.right = Add(n.right, key, val);
n.needRecalc = true;
++n.cnt;
return Balance(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node Balance(Node n)
{
if (!isNeedFix || !IsBlack(n)) return n;
if (IsRed(n.left) && IsRed(n.left.left))
{
n = RotateR(n);
n.left.isBlack = true;
}
else if (IsRed(n.left) && IsRed(n.left.right))
{
n = RotateLR(n);
n.left.isBlack = true;
}
else if (IsRed(n.right) && IsRed(n.right.left))
{
n = RotateRL(n);
n.right.isBlack = true;
}
else if (IsRed(n.right) && IsRed(n.right.right))
{
n = RotateL(n);
n.right.isBlack = true;
}
else isNeedFix = false;
return n;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void RemoveAt(long index)
{
root = RemoveAt(root, index);
if (root != null) root.isBlack = true;
}
Node RemoveAt(Node n, long index)
{
if (ope) Eval(n);
--n.cnt;
var r = index.CompareTo(Cnt(n?.left));
if (r < 0)
{
n.left = RemoveAt(n.left, index);
n.needRecalc = true;
return BalanceL(n);
}
if (r > 0)
{
n.right = RemoveAt(n.right, index - Cnt(n?.left) - 1);
n.needRecalc = true;
return BalanceR(n);
}
if (n.left == null)
{
isNeedFix = n.isBlack;
return n.right;
}
n.left = RemoveMax(n.left);
n.key = lmax.key;
n.val = lmax.val;
n.needRecalc = true;
return BalanceL(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Remove(Key key)
{
root = Remove(root, key);
if (root != null) root.isBlack = true;
}
Node Remove(Node n, Key key)
{
if (ope) Eval(n);
--n.cnt;
var r = c(key, n.key);
if (r < 0)
{
n.left = Remove(n.left, key);
n.needRecalc = true;
return BalanceL(n);
}
if (r > 0)
{
n.right = Remove(n.right, key);
n.needRecalc = true;
return BalanceR(n);
}
if (n.left == null)
{
isNeedFix = n.isBlack;
return n.right;
}
n.left = RemoveMax(n.left);
n.key = lmax.key;
n.val = lmax.val;
n.needRecalc = true;
return BalanceL(n);
}
Node RemoveMax(Node n)
{
if (ope) Eval(n);
--n.cnt;
if (n.right != null)
{
n.right = RemoveMax(n.right);
n.needRecalc = true;
return BalanceR(n);
}
lmax = n;
pool.Add(lmax);
isNeedFix = n.isBlack;
return n.left;
}
Node BalanceL(Node n)
{
if (!isNeedFix) return n;
if (IsBlack(n.right) && IsRed(n.right.left))
{
var b = n.isBlack;
n = RotateRL(n);
n.isBlack = b;
n.left.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.right) && IsRed(n.right.right))
{
var b = n.isBlack;
n = RotateL(n);
n.isBlack = b;
n.right.isBlack = true;
n.left.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.right))
{
isNeedFix = n.isBlack;
n.isBlack = true;
n.right.isBlack = false;
}
else
{
n = RotateL(n);
n.isBlack = true;
n.left.isBlack = false;
n.left = BalanceL(n.left);
isNeedFix = false;
}
return n;
}
Node BalanceR(Node n)
{
if (!isNeedFix) return n;
if (IsBlack(n.left) && IsRed(n.left.right))
{
var b = n.isBlack;
n = RotateLR(n);
n.isBlack = b; n.right.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.left) && IsRed(n.left.left))
{
var b = n.isBlack;
n = RotateR(n);
n.isBlack = b;
n.left.isBlack = true;
n.right.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.left))
{
isNeedFix = n.isBlack;
n.isBlack = true;
n.left.isBlack = false;
}
else
{
n = RotateR(n);
n.isBlack = true;
n.right.isBlack = false;
n.right = BalanceR(n.right);
isNeedFix = false;
}
return n;
}
public KeyValuePair<Key, ValueT> this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return At(root, i); }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ChangeValue(long i, ValueT v)
{
var n = root;
while (true)
{
if (ope) Eval(n);
if (n.left == null)
{
if (i == 0) break;
else
{
n = n.right;
--i;
}
}
else if (n.left.cnt == i) break;
else if (n.left.cnt > i) n = n.left;
else
{
i = i - n.left.cnt - 1;
n = n.right;
}
}
n.needRecalc = true;
n.val = v;
}
KeyValuePair<Key, ValueT> At(Node n, long i)
{
while (true)
{
if (ope) Eval(n);
if (n.left == null)
{
if (i == 0) return new KeyValuePair<Key, ValueT>(n.key, n.val);
else
{
n = n.right;
--i;
}
}
else if (n.left.cnt == i) return new KeyValuePair<Key, ValueT>(n.key, n.val);
else if (n.left.cnt > i) n = n.left;
else
{
i = i - n.left.cnt - 1;
n = n.right;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool ContainsKey(Key key)
{
var t = LowerBound(key);
return t < Cnt(root) && c(At(root, t).Key, key) == 0;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long UpperBound(Key key)
{
var n = root;
var ret = 0L;
while (true)
{
if (n == null) return ret;
if (c(key, n.key) < 0) n = n.left;
else
{
ret += Cnt(n.left) + 1;
n = n.right;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long LowerBound(Key key)
{
var n = root;
var ret = 0L;
while (true)
{
if (n == null) return ret;
if (c(key, n.key) <= 0) n = n.left;
else
{
ret += Cnt(n.left) + 1;
n = n.right;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, ValueT> Min()
{
Node n = root.left, p = root;
while (n != null)
{
p = n;
if (ope) Eval(p);
n = n.left;
}
return new KeyValuePair<Key, ValueT>(p.key, p.val);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, ValueT> Max()
{
Node n = root.right, p = root;
while (n != null)
{
p = n;
if (ope) Eval(p);
n = n.right;
}
return new KeyValuePair<Key, ValueT>(p.key, p.val);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(long l, long r, ValueE val) => Update(root, l, r, val);
void Update(Node n, long l, long r, ValueE val)
{
if (n == null) return;
Eval(n);
n.needRecalc = true;
var lc = Cnt(n.left);
if (lc < l) Update(n.right, l - lc - 1, r - lc - 1, val);
else if (r <= lc) Update(n.left, l, r, val);
else if (l <= 0 && Cnt(n) <= r) n.lazy = val;
else
{
n.val = g(n.val, val, 1);
if (l < lc) Update(n.left, l, lc, val);
if (lc + 1 < r) Update(n.right, 0, r - lc - 1, val);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public ValueT Query(long l, long r) => root == null ? ti : Query(root, l, r);
ValueT Query(Node n, long l, long r)
{
var v1 = ti; var v2 = ti; var v3 = ti;
Eval(n);
var lc = Cnt(n.left);
if (lc < l) v3 = n.right == null ? ti : Query(n.right, l - lc - 1, r - lc - 1);
else if (r <= lc) v1 = n.left == null ? ti : Query(n.left, l, r);
else if (l <= 0 && Cnt(n) <= r)
{
Recalc(n);
v2 = n.dat;
}
else
{
if (l < lc) v1 = n.left == null ? ti : Query(n.left, l, lc);
if (lc + 1 < r) v3 = n.right == null ? ti : Query(n.right, 0, r - lc - 1);
v2 = n.val;
}
return f(f(v1, v2), v3);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Any() => root != null;
public long Count => Cnt(root);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, ValueT>[] List()
{
var ret = new List<KeyValuePair<Key, ValueT>>();
var stack = new LIB_Deque<Node>();
var node = root;
while (true)
{
if (node != null)
{
stack.PushBack(node);
node = node.left;
}
else
{
if (stack.Count == 0) break;
ret.Add(new KeyValuePair<Key, ValueT>(stack.Back.key, stack.Back.val));
node = stack.PopBack().right;
}
}
return ret.ToArray();
}
}
class LIB_RedBlackTree<Key, Value>
{
LIB_RedBlackTree<Key, Value, int> tree;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(Comparison<Key> c) { tree = new LIB_RedBlackTree<Key, Value, int>(default(Value), 0, null, null, null, c, false); }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree() : this(Comparer<Key>.Default.Compare) { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(Key key, Value val) => tree.Add(key, val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Remove(Key key) => tree.Remove(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void RemoveAt(long index) => tree.RemoveAt(index);
public KeyValuePair<Key, Value> this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return tree[i]; }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool ContainsKey(Key key) => tree.ContainsKey(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long UpperBound(Key key) => tree.UpperBound(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long LowerBound(Key key) => tree.LowerBound(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, Value> Min() => tree.Min();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, Value> Max() => tree.Max();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Any() => tree.Any();
public long Count => tree.Count;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, Value>[] List() => tree.List();
}
class LIB_RedBlackTree<T>
{
LIB_RedBlackTree<T, int, int> tree;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(Comparison<T> c) { tree = new LIB_RedBlackTree<T, int, int>(0, 0, null, null, null, c, false); }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree() : this(Comparer<T>.Default.Compare) { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(T val) => tree.Add(val, 0);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Remove(T val) => tree.Remove(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void RemoveAt(long index) => tree.RemoveAt(index);
public T this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return tree[i].Key; }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool ContainsKey(T val) => tree.ContainsKey(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long UpperBound(T val) => tree.UpperBound(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long LowerBound(T val) => tree.LowerBound(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T Min() => tree.Min().Key;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T Max() => tree.Max().Key;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Any() => tree.Any();
public long Count => tree.Count;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T[] List() => tree.List().Select(e => e.Key).ToArray();
}
class LIB_Deque<T>
{
T[] array;
int front, cap;
public int Count;
public T this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return array[GetIndex((int)i)]; }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
set { array[GetIndex((int)i)] = value; }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_Deque(long cap = 16)
{
array = new T[this.cap = (int)cap];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
int GetIndex(int i)
{
if (i >= cap) throw new Exception();
var r = front + i;
return r >= cap ? r - cap : r;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void PushFront(T x)
{
if (Count == cap) Extend();
if (--front < 0) front += array.Length;
array[front] = x;
++Count;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T PopFront()
{
if (Count-- == 0) throw new Exception();
var r = array[front++];
if (front >= cap) front -= cap;
return r;
}
public T Front => array[front];
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void PushBack(T x)
{
if (Count == cap) Extend();
var i = front + Count++;
array[i >= cap ? i - cap : i] = x;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T PopBack()
{
if (Count == 0) throw new Exception();
return array[GetIndex(--Count)];
}
public T Back => array[GetIndex(Count - 1)];
[MethodImpl(MethodImplOptions.AggressiveInlining)]
void Extend()
{
T[] nb = new T[cap << 1];
if (front > cap - Count)
{
var l = array.Length - front; Array.Copy(array, front, nb, 0, l);
Array.Copy(array, 0, nb, l, Count - l);
}
else Array.Copy(array, front, nb, 0, Count);
array = nb; front = 0; cap <<= 1;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Insert(long i, T x)
{
if (i > Count) throw new Exception();
this.PushFront(x);
for (int j = 0; j < i; j++) this[j] = this[j + 1];
this[i] = x;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T RemoveAt(long i)
{
if (i < 0 || i >= Count) throw new Exception();
var r = this[i];
for (var j = i; j > 0; j--) this[j] = this[j - 1];
this.PopFront();
return r;
}
}
class LIB_FastIO
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_FastIO() { str = Console.OpenStandardInput(); }
readonly Stream str;
readonly byte[] buf = new byte[2048];
int len, ptr;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
byte read()
{
if (ptr >= len)
{
ptr = 0;
if ((len = str.Read(buf, 0, 2048)) <= 0)
{
return 0;
}
}
return buf[ptr++];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
char Char()
{
byte b = 0;
do b = read();
while (b < 33 || 126 < b);
return (char)b;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
virtual public string Scan()
{
var sb = new StringBuilder();
for (var b = Char(); b >= 33 && b <= 126; b = (char)read())
sb.Append(b);
return sb.ToString();
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
virtual public long Long()
{
long ret = 0; byte b = 0; var ng = false;
do b = read();
while (b != '-' && (b < '0' || '9' < b));
if (b == '-') { ng = true; b = read(); }
for (; true; b = read())
{
if (b < '0' || '9' < b)
return ng ? -ret : ret;
else ret = (ret << 3) + (ret << 1) + b - '0';
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
virtual public double Double() { return double.Parse(Scan(), CultureInfo.InvariantCulture); }
}
class LIB_FastIODebug : LIB_FastIO
{
Queue<string> param = new Queue<string>();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_FastIODebug() { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override string Scan() => NextString();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override long Long() => long.Parse(NextString());
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override double Double() => double.Parse(NextString());
}
}
yupiteru_kun